Physics
posted by Johnson .
A ruler is accurate when the temperature is 25°C. When the temperature drops to 16°C, the ruler shrinks and no longer measures distances accurately. However, the ruler can be made to read correctly if a force of magnitude 1.2 103 N is applied to each end so as to stretch it back to its original length. The ruler has a crosssectional area of 1.50 105 m2, and it is made from a material whose coefficient of linear expansion is 2.10 105 (C°)1. What is Young's modulus for the material from which the ruler is made?

Physics 
drwls
Set the (negative) thermal expansion equal per unit length to the strain due to tension.
alpha*(delta T) = (F/A)/Y
Y = (F/A)/[(delta T)*alpha]
Y is Young's modulus
A is the cross sectional area, 1.5*10^5 m^2
delta T = 41 C
F = 1200 N
alpha = 2.1*10^5 C^1 is the coefficient of thermal expansion
Solve for Y 
Physics 
Johnson
that's what I have been working and keep coming up with either two answers 9.29 or 9.29 * 10 ^10 and the computer is telling me its wrong I don't know what else to do. Maybe I'm computing the number wrong.

Physics 
drwls
I also get 9.29*10^10 N/m^2. That is a typical value for a metal.
Respond to this Question
Similar Questions

Physics
A ruler is accurate when the temperature is 25°C. When the temperature drops to 16°C, the ruler shrinks and no longer measures distances accurately. However, the ruler can be made to read correctly if a force of magnitude 1.2 103 … 
Physics
A ruler is accurate when the temperature is 25°C. When the temperature drops to 16°C, the ruler shrinks and no longer measures distances accurately. However, the ruler can be made to read correctly if a force of magnitude 1.2 103 … 
math (ruler)
I need help finding the mesurment in a ruler the little bitty mark could you pull up a ruler for me with all the marks . 
physics
A ruler stands vertically against a wall. It is given a tiny impulse at such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that . The ruler has mass … 
Physics Classical Mechanics
A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. … 
PHYSICS(HELP!!)
A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. … 
physics(HELP)
A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. … 
PHYSICS!!! HELP
A ruler stands vertically against a wall. It is given a tiny impulse at θ=0∘ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that ω(θ=0∘)=0. … 
Physics(URGENT!!!!)
A ruler stands vertically against a wall. It is given a tiny impulse at Î¸=0âˆ˜ such that it starts falling down under the influence of gravity. You can consider that the initial angular velocity is very small so that Ï‰(Î¸=0âˆ˜)=0. … 
Physics
A steel ruler is calibrated to read true at 21.6 °C. A draftsman uses the ruler at 44.5 °C to draw a line on a 44.5 °C copper plate. As indicated on the warm ruler, the length of the line is 0.314 m. To what temperature should the …