Physics
posted by Mildred .
uniform door (0.81 m wide and 2.1 m high) weighs 122 N and is hung on two hinges that fasten the long left side of the door to a vertical wall. The hinges are 1.5 m apart. Assume that the lower hinge bears all the weight of the door.
(a) Find the magnitude and direction of the horizontal component of the force applied to the door by the upper hinge.
magnitude N
direction Select to the left to the right upwards downwards
(b) Find the magnitude and direction of the horizontal component of the force applied to the door by the lower hinge.
magnitude N
direction Select to the left to the right upwards downwards
(c) Determine the magnitude and direction of the force applied by the door to the upper hinge.
magnitude N
Direction Select to the left to the right upwards downwards
(d) determine the magnitude and direction (below the horizontal) of the force applied by the door to the lower hinge.
magnitude N
direction °

Physics 
bobpursley
This is far to difficult to do in ASCII.
STart with a drawing, at each hinge you have a vertical force and a horizontal force. The sum of the vertical forces equals weight of the door. The sum of the horizontal forces is zero, and the sum of moments about any point is zero. Those relations will yield the answer.
Respond to this Question
Similar Questions

Physics
A uniform door (0.81 m wide and 2.1 m high) weighs 122 N and is hung on two hinges that fasten the long left side of the door to a vertical wall. The hinges are 1.5 m apart. Assume that the lower hinge bears all the weight of the door. … 
Physics
A uniform door (0.81 m wide and 2.1 m high) weighs 122 N and is hung on two hinges that fasten the long left side of the door to a vertical wall. The hinges are 1.5 m apart. Assume that the lower hinge bears all the weight of the door. … 
Physics
A 0.006kg bullet traveling horizontally with a speed of 1.00 103 m/s enters an 21.1kg door, imbedding itself 10.4 cm from the side opposite the hinges as in the figure below. The 1.00mwide door is free to swing on its hinges. (c) … 
physics
A 0.005kg bullet traveling horizontally with a speed of 1.00 103 m/s enters an 20.3kg door, imbedding itself 10.6 cm from the side opposite the hinges as in the figure below. The 1.00mwide door is free to swing on its hinges. (c) … 
physiC
A uniform door (0.81 m wide and 2.1 m high) weighs 150 N and is hung on two hinges that fasten the long left side of the door to a vertical wall. The hinges are 1.9 m apart. Assume that the lower hinge bears all the weight of the door. … 
physics
A door, essentially a uniform rectangle of height 2.00 m, width 0.78 m, and weight 136.0 N, is supported at one edge by two hinges, one 18.1 cm above the bottom of the door and one 181.9 cm above the bottom of the door. Calculate the … 
physics
A door, essentially a uniform rectangle of height 2.00 m, width 0.78 m, and weight 136.0 N, is supported at one edge by two hinges, one 18.1 cm above the bottom of the door and one 181.9 cm above the bottom of the door. Calculate the … 
Physics
A uniform 22 kg door that is 2.5 m high by 0.80 m wide is hung from two hinges that are 20 cm from the top and 20 cm from the bottom. If each hinge supports half the weight of the door, find the magnitude and direction of the horizontal … 
College physics
A 0.006 00kg bullet traveling horizontally with a speed of 1.00 x 10^3 m/s enters an 20.1kg door, imbedding itself 10.9 cm from the side opposite the hinges as in the figure below. The 1.00m wide door is free to swing on its frictionless … 
Physics
A person pushes on a doorknob with a force of 5N. The direction of the force is at an angle of 20 degrees from the perpendicular to the surface of the door. The doorknob is located .800m from axis of the hinges of the door. The door …