Trig
posted by Jon .
Verify that (secx/sinx)*(cotx/cscx)=cscx is an identity.
(x=theta BTW)

Trig 
drwls
(secx/sinx)*(cotx/cscx)
= (secx/cscx)(cotx/sinx)
= (sinx/cosx)*cotx*(1/sinx)
The last steps should be obvious
Respond to this Question
Similar Questions

Math
Verify the identity . (cscXcotX)^2=1cosX/1+cosX _______ sorry i cant help you (cscXcotX)=1/sinX  cosX/sinX = (1cosX)/sinX If you square this you have (1cosX)^2/(sinX)^2 Now use (sinX)^2 = 1  (cosX)^2 to get (1cosX)^2 / 1  … 
calculus
express in sinx 1 1  +  cscx + cotx cscx  cotx and express in cosx 1 + cot x   sin^2x cscx = 1/sinx so what do i do w. that extra one on the top!? 
trig
express this in sinx (1/ cscx + cotx )+ (1/cscx cotx) i got 2sinx is that right? 
drwls
My previous question: Verify that (secx/sinx)*(cotx/cscx)=cscx is an identity. (secx/sinx)*(cotx/cscx) = (secx/cscx)(cotx/sinx) = (sinx/cosx)*cotx*(1/sinx) "The last steps should be obvious" Not to me. I can convert (sinx/cosx) to … 
PreCalculus
Find a numerical value of one trigonometric function of x if tanx/cotx  secx/cosx = 2/cscx a) cscx=1 b) sinx=1/2 c)cscx=1 d)sinx=1/2 
Trig
verify the following identity: tanx+cotx/cscx=secx 
Pre Calculus
(secx)/(tanx)+(cscx)/(cotx)=secx+cscx Please help me verify this trigonometric identity. 
Math
Im really struggling with these proving identities problems can somebody please show me how to do these? 
Precalculus/Trig
I can't seem to prove these trig identities and would really appreciate help: 1. cosx + 1/sin^3x = cscx/1  cosx I changed the 1: cosx/sin^3x + sin^3x/sin^3x = cscx/1cosx Simplified: cosx + sin^3x/sin^3x = cscx/1cosx I don't know … 
Math  Trigonometry
I need help proving this identity cscx + secx = (cosx + sinx)(secx)(cscx)