Calculus
posted by Sam .
1) Find the derivative with respect to x of
Integral from 1 to X^3 of sqrt( 1 + t²) dt
I got sqrt( 1 + X^6) * 3x². Is that right?
2) Integral from 0 to pi/2 of
Xcos(X²)dx

For these kind of integrals you either have to go to tables of integrals or find a suitable computer program
I found the integral of √(1+t^2) to be
[ln(√(1+t^2) + t)]/2 + [t√(1+t^2)]/2
after evaluating this from 1 to x^3 I got
[ln(√(1+x^6) + x^3)]/2 + [x^3√(1+x^6)]/2  [ln(√2 + 1) + √2]/2
now you have to differentiate, ughhh!
Somehow I don't think this would simplify down to √( 1 + x^6) * 3x²
for your second question
integral of x(cos(x^2))dx from 0 to pi/2
= (1/2)sin x^2 │ from 0 to pi/2
= 1/2 sin [(pi/2)^2]  1/2 sin 0
= .312133 
The answer to question 1) is indeed
sqrt( 1 + X^6) * 3x².
You can put x^3 = y and differentiate w.r.t. y and then multiply by the derivative of y w.r.t. x (chain rule). The derivative w.r.t. y is sqrt(1+y^2) =sqrt(1+x^6) and the derivative of y w.r.t. x is 3 x^2. 
Let's think for a minute about what this first question means.
We have some function y(t) which we integrate from t = 1 to t = x^3.
Then we want to find out how much the area under the function changes for a smal change in x.
Well the change of the area for a change dx in x is in fact the value of the function at t=x^3
Graph the function y = f(t) (any old function, straight line will do.
Look at the area under the function from t = 1 to t = x^3
look at how that area changes for a small change in t
Now for your case
f(t)dt when t = x^3 is:
sqrt(1+x^6) (3 x^2)
because
f(t) = sqrt(1+t^2)
and
dt = 3 x^2 dx
Respond to this Question
Similar Questions

CALCULUS 2!!! PLEASE HELP!!
I'm having trouble with this question on arc length: y=lnx, (squareroot)3/3 greater than or equal to x less than or equal to 1 It sounds as if you want the length of the y = ln x curve from x = sqrt(3)/3 (0.57735..) to 1. The formula … 
Calculus
Graph the curve and find its exact length. x = e^t + e^t, y = 5  2t, from 0 to 3 Length = Integral from 0 to 3 of: Sqrt[(dx/dt)^2 + (dy/dt)^2] dx/dt = e^t  e^t, correct? 
Calculus
Find the exact coordinates of the centroid. y = sqrt[x], y = 0, x = 9.  Is this basically 1/4 of an oval/ellipse? 
calc check: curve length
Find the length of the curve y=(1/(x^2)) from ( 1, 1 ) to ( 2, 1/4 ) [set up the problem only, don't integrate/evaluate] this is what i did.. let me know asap if i did it right.. y = (1/(x^2)) dy/dx = (2/(x^3)) L = integral from a … 
Calculus
Find the volume of the solid whose base is the region in the xyplane bounded by the given curves and whose crosssections perpendicular to the xaxis are (a) squares, (b) semicircles, and (c) equilateral triangles. for y=x^2, x=0, … 
Calculus  repost
Find the derivative of F(x)= integral from 2 to x of sqrt(t^3+8)dt? 
Calculus
Evaluate the indefinite integral: 8xx^2. I got this but I the homework system says its wrong:sqrt((x8)x)/(2*sqrt(x8)*sqrt(x))*(((sqrt(x8)*(x4)*sqrt(x))32*log(sqrt(x8)+sqrt(x)) 
Calculus
Hi. In an integration solution, the integral of (1/(sqrt (8u squared)) is written as arcsin(u/sqrt 8), but I don't see how they got it. When I did it I got (1/8)*(arcsin(u*sqrt8)). What I did was take sqrt8 common in the denominator … 
Calculus 2 (Differential Equation)
How would you solve the following problem explicitly? 
Math  Calculus
Find the area of the surface of revolution generated by revolving the curve y = 3 sqrt (x), 0 <= x <= 4, about the xaxis. Okay, so I've set up the integral like this: 2pi ∫[0,4] (3 sqrt (x))(sqrt(1+(1/4x)))dx Which is coming …