Calculus
posted by Cat .
f(x) = (ax+b)/(x^2  c)
i) the graph of f is symmetric about the yaxis
ii) limit as x approaches 2+ of f(x) is positive infinity
iii) f'(1) = 2
Determine the values of a, b, c
I got that c = 4 from the first i). I'm stuck on the second one because
f(x) = f(x)
(ax+b)/(x^2  c) = (ax+b)/(x^2  c)
ax+b = ax+b
1=1 ????

If it is symettric, then a has to be zero. If a is not zero, then it is an odd function. a being zero satisfies your solution.