AP PHYSICS

posted by .

A .35 kg ladle sliding on a horizontal frictionless surface is attached to one end of a horizontal spring (with the spring constant (k) =455 N/m) whose other end is fixed. The mass has a kinetic energy of 10 J as it passes through its equilibrium position (the point at which the spring force is zero).

At what riate is the spring doing work on the ladle as the ladle passes through its equilibruim position?

And

At what raite is the spring doing work on the ladle when the spring is compressed .1m and the ladle is moving away from the equilibrium position?

  • AP PHYSICS -

    there was a type-o..but you probably saw it...both questions are suppose to say..at what rate...not raite or riate

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. I really dont get this. physics

    A .35 kg ladle sliding on a horizontal frictionless surface is attached to one end of a horizontal spring (with the spring constant (k) =455 N/m) whose other end is fixed. The mass has a kinetic energy of 10 J as it passes through …
  2. physics

    In Figure (a), a block of mass m lies on a horizontal frictionless surface and is attached to one end of a horizontal spring (spring constant k) whose other end is fixed. The block is initially at rest at the position where the spring …
  3. Calculus based Physics - Springs

    A 0.49 kg ladle sliding on a horizontal frictionless surface is attached to one end of a horizontal spring (k = 640 N/m) whose other end is fixed. The ladle has a kinetic energy of 260 J as it passes through its equilibrium position …
  4. Genereal Physics I

    A 0.49 kg ladle sliding on a horizontal frictionless surface is attached to one end of a horizontal spring (k = 640 N/m) whose other end is fixed. The ladle has a kinetic energy of 260 J as it passes through its equilibrium position …
  5. Physics Spring

    A mass sitting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. 1.0 J of work is required to compress the spring by 0.12 m. If the mass is released from rest with the spring …
  6. PHYSICS

    A block of mass m lies on a horizontal frictionless surface and is attached to one end of a horizontal spring (spring constant k) whose other end is fixed. The block is initially at rest at the position where the spring is unstretched …
  7. Physics

    A mass sitting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. 5.5 J of work is required to compressed the spring by 0.16 m. If the mass is released from rest with the spring …
  8. physics

    A large fake cookie sliding on a horizontal surface is attached to one end of a horizontal spring with spring constant k = 430 N/m; the other end of the spring is fixed in place. The cookie has a kinetic energy of 21.0 J as it passes …
  9. Physics

    A 0.60 kg ladle sliding on a horizontal frictionless surface is attached to one end of a horizontal springPhy(k = 430 N/m) whose other end is fixed. The ladle has a kinetic energy of 8.6 J as it passes through its equilibrium position …
  10. Please Help with Physics Problems???????

    A 0.60 kg ladle sliding on a horizontal frictionless surface is attached to one end of a horizontal spring (k = 430 N/m) whose other end is fixed. The ladle has a kinetic energy of 8.6 J as it passes through its equilibrium position …

More Similar Questions