calculus
posted by sara .
A conical tank( with vertex down) is 10 feet across the top and 18 feet deep. As the water flows into the tank, the change is the radius of the water at a rate of 2 feet per minute, find the rate of change of the volume of the water when the radius of the water is 2 feet.

Let y be the water level height above the vertex. The volume of water is
V = (pi/3)r^2 y
From the dimensions you have provided, r = (5/18) y
y = (18/5) r
V = (pi/3)(18/5)^2 r^3
Calculate dV/dt = (dV/dr)*(dr/dt) and evaluate it when r = 2 ft.
In your case, dr/dt = 2 ft/min
Respond to this Question
Similar Questions

Calculus
You have a conical tank, vertex down, which is 12 feet across the top and 18 feet deep. If water flows in at a rate of 9 cubic feet per minute, find the exact rate of change when the water is 6 feet deep. You know the rate of dV/dt … 
calculusrate problem
A conical tank (with vertex down) is 10 feet acros the top and 12 feet deep. If water is flowing into the tank at a rate of 10 cubic feet per minute, find the rate of change of the depth of the water when the water is 8 feet deep. 
Math
A conical water tank with vertex down has a radius of 10 feet at the top and is 29 feet high. If water flows into the tank at a rate of 10 , how fast is the depth of the water increasing when the water is 17 feet deep? 
calculus
A conical water tank with vertex down has a radius of 12 feet at the top and is 23 feet high. If water flows into the tank at a rate of 20 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 17 feet … 
math  calc
A conical water tank with vertex down has a radius of 12 feet at the top and is 26 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12 feet … 
math  calc
A conical water tank with vertex down has a radius of 12 feet at the top and is 26 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12 feet … 
cal
A conical tank (with vertex down) is 12 feet across the top and 18 feet deep. If water is flowing into the tank at a rate of 18 cubic feet per minute, find the rate of change of the depth of the water when the water is 10 feet deep. … 
Math
A conical water tank with vertex down has a radius of 10 feet at the top and is 22 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 14 feet … 
Calculus (math)
A conical water tank with vertex down has a radius of 12 feet at the top and is 23 feet high. If water flows into the tank at a rate of 20 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12 feet … 
math
A conical water tank with vertex down has a radius of 13 feet at the top and is 28 feet high. If water flows into the tank at a rate of 10 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 17 feet …