# Trig

posted by .

establish identity

sec 0/1 + sec0 = 1 - cos0/sin^2 0

• Trig -

Do you mean sec 0/(1 + sec 0) ?
On the right side,do you mean
(1 - cos 0)/sin^2 0?

You need to use parentheses to make your equations unambiguous.

## Similar Questions

1. ### trig...again

gahh i cant figure this one out either. you have you verify the identity only using one side of the equation: sec^2x*sin^2x+sec^2x=-1 this identity cannot possible be true. on the left side you are adding 2 squared quantities, how …
2. ### math

How would you establish this identity: (1+sec(beta))/(sec(beta))=(sin^2(beta))/(1-cos(beta)) on the right, sin^2 = 1-cos^2, that factor to 1-cos * `1+cos, then the denominator makes the entire right side 1+cosB which is 1+1/sec which …
3. ### Trig

Establish the identity: 1. sin0(cot0 + tan0) = sec0 2. cos0 +1/cos0 -1 = 1 + sec0/1 - sec0
4. ### trig 26

simplify to a constant or trig func. 1. sec ²u-tan ²u/cos ²v+sin ²v change expression to only sines and cosines. then to a basic trig function. 2. sin(theta) - tan(theta)*cos(theta)+ cos(pi/2 - theta) 3. (sec y - tan y)(sec y + …
5. ### trig

Establish the trigonometric identity (Hint: Use sum to product) cos(5x)+cos(3x)/sin(5x)-sin(3x)=cot(x)
6. ### trig

For each expression in column I, choose the expression from column II to complete an identity: Column I Column II 1. -tanxcosx A. sin^2x/cos^2x 2. sec^2x-1 B. 1/sec^2x 3. sec x/cscx C. sin(-x) 4. 1+sin^2x D.csc^2x-cot^2x+sin^2x 5. …
7. ### Math

1)Use the definitions sin0(theta) = y/r, cos0(theta) = x/r and/or tan0(theta) = y/x to prove that cot0(theta) = 1/tan0(theta) 2)For all 0(theta) prove: a)cos(t) = 1/sec0(theta) b. sec(t) = 1/cos0(theta)
8. ### help help helpppp--math

1)Use the definitions sin0(theta) = y/r, cos0(theta) = x/r and/or tan0(theta) = y/x to prove that cot0(theta) = 1/tan0(theta) 2)For all 0(theta) prove: a)cos(t) = 1/sec0(theta) b. sec(t) = 1/cos0(theta)
9. ### Math

2-sin^20/cos0 = sec0 + cos0 * 0 = Theta
10. ### trig

sec0+ten0-1/tan0+sec0+1=1+sin0/cos0

More Similar Questions