Math: Linear Algebra

posted by .

Let T1: P1 -> P2 be the linear transformation defined by:

T1(c0 + c1*x) = 2c0 - 3c1*x

Using the standard bases, B = {1, x} and B' = {1, x, x^2}, what is the transformation matrix

[T1]B',B

T(c0 + c1*x) = 2c0 - 3c1*x --->


T(1) = 2

T(x) = -3x

So, the matrix elements are:

T_{1,1} = 2

T_{1,2} = 0

T_{2,1} = 0

T_{2,2} = -3

T_{3,1} = 0

T_{3,2} = 0

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Linear Algebra

    a)Let v be a fixed vector in R^3. Show that the transformation defined by T(u)=vxu is a linear transformation. b)Find the range of this linear transformation. Thanx
  2. Algebra

    Determine if the relationship represented in the table is linear. If it is linear, write an equation. x 2 5 7 10 12 20 y -3 0 2 5 7 15 A) Linear; y = x - -5 B) Linear; y = -5x C) Linear; y = x + -5 D) Not linear I'm thinking it's C …
  3. Linear Alebra

    Show that the transformation T:R^2->R^2 given T(x1,x2)=(3x1-5x2,x1+2x2) is linear by verifying that satisfies the definition of linear.
  4. Linear Algebra

    (1) Define T:R->R be a linear transformation such that T(x,y,z)= (2x,2y,2z) then the given value of T is A. 3 B. 2 C. 4 D. 6 (A) (B) (C) (D) (2) Let V and W be vector spaces over a field F, and let T:V-> W be a linear transformation …
  5. Linear Algebra

    Consider the linear transformation T: R^3->R^3 which acts by rotation around the y-axis by an angle of pi, followed by a shear in the x-direction by a factor of 2. a) Find the matrix for T. Explain your method. b) What is T(1,2,3) …
  6. Linear Algebra

    2. Suppose that T is a linear transformation from R2 to R4 such that T ((1, 1)) = (3, −1, 4, −3) and T ((2, −1)) = (3, −2, −1, −3). Determine the matrix of T (with respect to the standard bases). …
  7. Linear Algebra

    Let T be a linear operator on R2 defined as follows on the standard basis of R2. T(1, 0) = (3, 2), T(0, 1) = (−1, 4). Find T(9, 4).
  8. Linear Algebra

    Let T : Rn-->Rn be a linear transformation, whose standard matrix is invertible. Show that if B = {v1, . . . , vn} is a basis for Rn, then {T(v1), . . . ,T(vn)} is also a basis for Rn.
  9. Linear Algebra

    Hello, could anyone help me with this excersise of linear algebra, Please?
  10. Math

    The transformation T:R^2--》R^2 is defined by T(1,0)=(2,-5) and T(-3,2)=(1,4). Find the natural matrix of the linear transformation T and find T(x,y).

More Similar Questions