calc check
posted by marsha .
if you evaluate the integral of:
t csc^2 t dt, is the answer
t cot t + lnsint + C
Differentiate the answer to see if it is correct.
Respond to this Question
Similar Questions

Calculus
Hello, I'm having trouble with this exercise. Can you help me? 
calc
how do you start this problem: integral of xe^(2x) There are two ways: 1) Integration by parts. 2) Differentiation w.r.t. a suitably chosen parameter. Lets do 1) first. This is the "standard method", but it is often more tedious than … 
calc
evaluate the integral: y lny dy i know it's integration by parts but i get confused once you have to do it the second time Leibnitz rule (a.k.a. product rule): d(fg) = f dg + g df y lny dy = d[y^2/2 ln(y)]  y/2 dy > Integral … 
Math/Calculus
How would I evaluate the following integral by using integration by parts? 
calc: avg value
Find the average value of the function "f(x) = x^2 sqrt(1+x^3)" on the interval [0,2]. and this is what i did.. please check for mistakes. thanks :D f(x) = x^2 sqrt(1+x^3), [0,2] f ave = (1/(ba))*inegral of a to b for: f(x) dx f ave … 
calculus
We're doing indefinite integrals using the substitution rule right now in class. The problem: (integral of) (e^6x)csc(e^6x)cot(e^6x)dx I am calling 'u' my substitution variable. I feel like I've tried every possible substitution, but … 
Calculus
Differentiate. y= u(a cos u + b cot u) I am not sure if this correct. I was not sure whether to leave the variables as are or where the negatives should be placed? 
Calculus
Evaluate the integral: 16csc(x) dx from pi/2 to pi (and determine if it is convergent or divergent). I know how to find the indefinite integral of csc(x) dx, but I do not know how to evaluate the improper integral, at the following … 
trig
verify (csc^41)/cot^2x=2+cot^2x So this is what I have so far on the left side (csc^2x+1)(cscx+1)(cscx1)/cot^2x =(csc^2x+1)(cot^2x)/cot^2x i think I'm doing something wrong. Please help! 
PreCalculus
Verify the identity. (csc(2x)  sin(2x))/cot(2x)=cos(2x) =csc(2x)/cot(2x)  sin(2x)/cot(2x) =csc(2x)/cot(2x)  cos(2x) Is this correct so far?