# calculus

posted by .

The base of a solid is a circle of
Find the exact volume of this solid if the cross sections perpendicular to a given axis are equilateral right triangles.

The equation of the circle is:
x^2 + y^2 = 16

I have the area of the triangle (1/2bh) to be equal to 2sqrt(12)

(1/2 * 4 * sqrt12)

there are triangles that have vertical bases. They run parallel to the y-axis. The triangles are inside of the circle

Any help would be greatly appreciated! Thanks!

The volume of a cone is
V =(1/3)*(base area)*(height)

height = sqrt3 * r.
Therefore
V = sqrt3*pi*r^3

• calculus -

323

## Similar Questions

1. ### calculus

The base of a solid is a circle of radius = 4 Find the exact volume of this solid if the cross sections perpendicular to a given axis are equilateral right triangles. I have the area of the triangle (1/2bh) to be equal to 2sqrt(12) …
2. ### Calculus

R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the cross-sections of the solid perpendicular to the …
3. ### Calculus

R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the cross-sections of the solid perpendicular to the …
4. ### Calculus

R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the cross-sections of the solid perpendicular to the …
5. ### Calc

The base of a solid is a circle of radius a, and its vertical cross sections are equilateral triangles. The volume of the solid is 10 cubic meters. Find the radius of the circle.
6. ### calculus

volume of solid whose base is a circle with radius a, and cross sections of the solid cut perpendicular to the x-axis are squares
7. ### College Calculus

Find the volume of the solid with given base and cross sections. The base is the unit circle x^2+y^2=1 and the cross sections perpendicular to the x-axis are triangles whose height and base are equal.
8. ### calculus

The base of a solid in the xy-plane is the first-quadrant region bounded y = x and y = x2. Cross sections of the solid perpendicular to the x-axis are equilateral triangles. What is the volume, in cubic units, of the solid?
9. ### calculus

The base of a solid is the circle x2 + y2 = 9. Cross sections of the solid perpendicular to the x-axis are equilateral triangles. What is the volume, in cubic units, of the solid?
10. ### Calculus

The base of a solid is the circle x2 + y2 = 9. Cross sections of the solid perpendicular to the x-axis are equilateral triangles. What is the volume, in cubic units, of the solid?

More Similar Questions