discrete math

posted by .

Could someone help me with this induction proof. I know its true.

given then any integer m is less than or equal to 2, is it possible to find a sequence of m-1 consecutive positive integers none of which is prime? explain

any help is greatly appreciated thanks

I made a mistake... i meant any integer m is greater than or equal to 2

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. math induction

    prove the product of 4 consecutive integers is always divisible by 24 using the principles of math induction. Could anyone help me on this one?
  2. discrete math

    1)prove that if x is rational and x not equal to 0, then 1/x is rational. 2) prove that there is a positive integers that equals the sum of the positive integers not exceeding it. Is your proof constructive or nonconstructive?
  3. maths

    1. If the first and third of three consecutive odd integers are added, the result is 51 less than five times the second integer. Find the third integer. 2. Write as a subtraction problem and evaluate. 15 less than -2 n, n+1, N+2, ... …
  4. Discrete Math

    Could someone help me with this induction proof. I know its true. given then any integer m is greater than or equal to 2, is it possible to find a sequence of m-1 consecutive positive integers none of which is prime?
  5. math

    1)Find the third iterate x3 of f(x)=x2-4 for an initial value of x0=2 A)-4 B)4 C)12 D)-12 I chose C 2)Use Pascal's triangle to expand:(w-x)5 This ones long so I chose w5-5w4x+10w3x3-10w2x4+5wx4-x5 3)Use the binomial Theorem to find …
  6. Algebra II

    In an induction proof of the statement 4+7+10+...+(3n-1)=n(3n+5)/2 the first step is to show that the statement is true for some integers n. Note:3(1)+1=1[3(1)+5]/2 is true. Select the steps required to complete the proof. A)Show that …
  7. Discrete Math

    Theorem: For every integer n, if x and y are positive integers with max(x, y) = n, then x = y. Basic Step: Suppose that n = 1. If max(x, y) = 1 and x and y are positive integers, we have x = 1 and y = 1. Inductive Step: Let k be a …
  8. math

    What is the smallest of three consecutive integers if the sum of the smaller two integers is equal to 177 less than four times the largest?
  9. math

    What is the smallest of three consecutive integers if the sum of the smaller two integers is equal to 177 less than four times the largest?
  10. math

    What is the smallest of three consecutive integers if the sum of the smaller two integers is equal to 177 less than four times the largest?

More Similar Questions