# Physics Problem

posted by .

A 3.00-kg mass is fastened to a light spring that passes over a pulley. They pulley is frictionless, and its inertia may be neglected. The mass is released from rest when the spring is unstretched. If the mass drops 10.0cm before stopping, find (a) the spring constant of the spring and (b) the speed of the mass when it is 5.00cm below its starting point.

When the spring stops, there is no kinetic energy and the potential energy lost (M g X) equals the added potential energy of the spring, (1/2) k X^2.
(a) Since you know M = 3.00 kg, g = 9.8 m/s^2 and H = 0.100 mm, you can solve for the spring constant k.
(b) Use the enery conservation law and the fact that the energy stored in the spring is 1/4 as large when X = 5 cm, as it is at X = 10 cm.

## Similar Questions

1. ### Physics

Blocks of mass m1 and m2 are connected by a massless string that passes over a frictionless pulley. Mass m1 slides on a frictionless surface. Mass m2 is released while the blocks are at rest. The pulley is a solid disk with a mass …
2. ### Physics

A 20.0 kg block is connected to a 30.0 kg block by a string that passes over a light, frictionless pulley. The 30.0 kg block is connected to a spring that has negligible mass and a force constant of 200 N/m. The spring is unstretched …
3. ### physics

A 20.0 kg block is connected to a 30.0 kg block by a string that passes over a light, frictionless pulley. The 30.0 kg block is connected to a spring that has negligible mass and a force constant of 300 N/m, as shown in the figure …
4. ### ph

A 20.0 kg block is connected to a 30.0 kg block by a string that passes over a light, frictionless pulley. The 30.0 kg block is connected to a spring that has negligible mass and a force constant of 300 N/m, as shown in the figure …
5. ### Physics

In the configuration shown (10m incline for m1 and 8m vertical length for m2 with a spring under it, both masses are linked by a rope and a pulley at the top), the 52.0 N/m spring is unstretched, and the system is released from rest. …
6. ### Physics

In the configuration shown (10m incline for m1 and 8m vertical length for m2 with a spring under it, both masses are linked by a rope and a pulley at the top), the 52.0 N/m spring is unstretched, and the system is released from rest. …
7. ### mechanics 12

A 1.8 kg breadbox on a frictionless incline of angle θ = 37° is connected, by a cord that runs over a pulley, to a light spring of spring constant k = 120 N/m, as shown in the figure below. The box is released from rest when …
8. ### Physics

A block of mass m1 = 22.0 kg is connected to a block of mass m2 = 40.0 kg by a massless string that passes over a light, frictionless pulley. The 40.0-kg block is connected to a spring that has negligible mass and a force constant …
9. ### Physics

3 kg object is fastened to a light spring with the intervening cord passing over a pulley. The pulley is frictionless and it's inertia may been neglected. The object is released from rest when the spring is unstretched. If the object …
10. ### Physics

A 20.0 kg block is connected to a 30.0 kg block by a string that passes over a light, frictionless pulley. The 30.0 kg block is connected to a spring that has negligible mass and a force constant of 260 N/m, as shown in the figure …

More Similar Questions