Physics

posted by .

A bowling ball encounters a 0.76m vertical rise on the way back to the ball rack, as the drawing illustrates. Ignore frictional losses and assume that the mass of the ball is distributed uniformly. If the translational speed of the ball is 3.80m/s at the bottom of the rise, find the translational speed at the top.

Take the initial KEnergy, subtract the graviatational potential energy on the rise, and the remainder is KE. From that, compute speed.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Physics

    Equate the increase in potential energy at the higher elevation, M g H, to the decrease in kinetic energy. Make sure you include the kinetic energy of rotation, which is (1/2) I w^2. For a sphere of radius R, V = R w and I =(2/5) I …
  2. physics

    A bowling ball encounters a 0.76m vertical rise on the way back to the ball rack. Ignore frictional losses and assume that the mass of the ball is distributed uniformly. If the translational speed of the ball is 3.80m/s at the bottom …
  3. Physics please check

    A bowling ball encounters a 0.76 m vertical rise on the way back to the ball rack, as the drawing illustrates. Ignore frictional losses and assume that the mass of the ball is distributed uniformly. If the translational speed of the …
  4. Physics

    A bowling ball encounters a 0.76 m vertical rise on the way back to the ball rack, as the drawing illustrates. Ignore frictional losses and assume that the mass of the ball is distributed uniformly. If the translational speed of the …
  5. Physics

    After you pick up a spare, your bowling ball rolls without slipping back toward the ball rack with a linear speed of v = 3.41 m/s To reach the rack, the ball rolls up a ramp that rises through a vertical distance of h = 0.529 m. What …
  6. physics

    After you pick up a spare, your bowling ball rolls without slipping back toward the ball rack with a linear speed of v = 3.27 m/s To reach the rack, the ball rolls up a ramp that rises through a vertical distance of h = 0.572 m. What …
  7. physics

    A bowling ball encounters a 0.760-m vertical rise on the way back to the ball rack, as the drawing illustrates. Ignore frictional losses and assume that the mass of the ball is distributed uniformly. The translational speed of the …
  8. Physics

    A bowling ball encounters a 0.760 m vertical rise on the way back to the ball rack, as the drawing illustrates. Ignore frictional losses and assume that the mass of the ball is distributed uniformly. The translational speed of the …
  9. Physics

    A bowling ball encounters a 0.760-m vertical rise on the way back to the ball rack, as the drawing illustrates. Ignore frictional losses and assume that the mass of the ball is distributed uniformly. The translational speed of the …
  10. Physics

    After you pick up a spare, your bowling ball rolls without slipping back toward the ball rack with a linear speed of = 3.18 m/s. To reach the rack, the ball rolls up a ramp that rises through a vertical distance of = 0.510 m. What …

More Similar Questions