Physics
posted by Technoboi11 .
Zero, a hypothetical planet, has a mass of 1.0x10^23 kg, a radius of 3.0x10^6 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface.
(a) If the probe is launched with an initial kinetic energy of 5.0x10^7 J, what will be its kinetic energy when it is 4.0x10^6 m from the center of Zero?
(b) If the probe is to achieve a maximum distance of 8.0x10^6 m from the center of Zero, with what initial kinetic energy must it be launched from the surface of Zero?
For Further Reading
* Physics/Math  drwls, Wednesday, March 7, 2007 at 5:55am
Use the rel;ationship
KE + Potential energy) = constant.
The potential energy at distance R from the center is
GMm/R
M is the planet's mass and m is the probes.
That means (1/2) mV^2  GMm/R = constant
Use that fact to compute the unknown kinetic energy in each problem

this is what i did..
V = sqrt(2GM/R)
V = sqrt(2(6.67e11)(1.0e23)/(3.0e6))
V = 2108.7
[..would i use earth's gravity for this question? .. if not.. what should i use for G?]
then..
(1/2) mV^2  GMm/R = constant
(.5(10)(2108.7)^2  ((6.67e11)(1.0e23)(10)/(4.0e6))
111165392.3  16675000 = 94490392.3 = 9.4e7
.. what am i doing wrong?
and how would i go about with the 2nd question?
please help!! thanks! :)
Respond to this Question
Similar Questions

Physics/Math
Zero, a hypothetical planet, has a mass of 1.0 1023 kg, a radius of 3.0 106 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. (a) If the probe is launched with an initial kinetic energy of 5.0 … 
Re: Physics/Math
Posted by Technoboi11 on Wednesday, March 7, 2007 at 1:09am. Zero, a hypothetical planet, has a mass of 1.0x10^23 kg, a radius of 3.0x10^6 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. (a) … 
Physics
Zero, a hypothetical planet, has a mass of 1.0 1023 kg, a radius of 3.0 106 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. (a) If the probe is launched with an initial kinetic energy of 5.0 … 
Physics/Math
Ok...I figured out part a but I am having trouble with b. part a was: Zero, a hypothetical planet, has a mass of 1.0x10^23 kg, a radius of 3.0x10^6 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. … 
Physics/Math
Ok...I figured out part a but I am having trouble with b. part a was: Zero, a hypothetical planet, has a mass of 1.0x10^23 kg, a radius of 3.0x10^6 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. … 
physics
Zero, a hypothetical planet, has a mass of 3.0*10^23 kg, a radius of 3.0*10^6 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. (a) If the probe is launched with an initial kinetic energy of 5.0*10^7 … 
Physics
Zero, a hypothetical planet, has a mass of 2.7 x 10^23 kg, a radius of 2.8 x 10^6 m, and no atmosphere. A 3.6 kg space probe is to be launched vertically from its surface. (a) If the probe is launched with an initial kinetic energy … 
Physics
Zero, a hypothetical planet, has a mass of 2.7 x 10^23 kg, a radius of 2.8 x 10^6 m, and no atmosphere. A 3.6 kg space probe is to be launched vertically from its surface. (b) If the probe is to achieve a maximum distance of 4.6 × … 
Physics
Zero, a hypothetical planet, has a mass of 4.0 1023 kg, a radius of 3.0 106 m, and no atmosphere. A 14 kg space probe is to be launched vertically from its surface. (a) If the probe is launched with an initial kinetic energy of 5.0 … 
physics
Zero, a hypothetical planet, has a mass of 5.7 x 1023 kg, a radius of 2.8 x 106 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. (a) If the probe is launched with an initial kinetic energy of …