What is sin(i) -- (sin of the imaginary number, i)

What is cos(i)-- cosine of the imaginary number, i
orrr
tan(1+i)

You can derive these things from the equation:

Exp(i x) = cos(x) + i sin(x) --->

sin(x) = [Exp(ix) - Exp(-ix)]/(2i)

cos(x) = [Exp(ix) + Exp(-ix)]/2

tan(x) =
1/i * [Exp(ix) - Exp(-ix)]/[Exp(ix) + Exp(-ix)]

These relations are also valid for complex values for x. E.g.:

tan(1+i) =

1/i * [Exp(i-1) - Exp(-i+1)]/[Exp(i-1) + Exp(-i+1)]

Exp[i-1] = Exp[i]Exp[-1] = Exp[-1](cos(1)+isin(1))

Exp[-i+1] = Exp[-i]Exp[1] = Exp[1](cos(1)-isin(1))

To evaluate sin(i), we can use the formula sin(x) = [Exp(ix) - Exp(-ix)]/(2i):

sin(i) = [Exp(i*i) - Exp(-i*i)]/(2i)

Since i*i = -1, we have:

sin(i) = [Exp(-1) - Exp(1)]/(2i)

Similarly, to evaluate cos(i), we can use the formula cos(x) = [Exp(ix) + Exp(-ix)]/2:

cos(i) = [Exp(i*i) + Exp(-i*i)]/2

Again, i*i = -1, so we get:

cos(i) = [Exp(-1) + Exp(1)]/2

Finally, to evaluate tan(1+i), we can use the tan(x) formula:

tan(x) = (1/i) * [Exp(ix) - Exp(-ix)]/[Exp(ix) + Exp(-ix)]

For tan(1+i), we substitute x = 1+i:

tan(1+i) = (1/i) * [Exp((1+i)i) - Exp(-((1+i)i))]/[Exp((1+i)i) + Exp(-((1+i)i))]

Now we can substitute Exp((1+i)i) and Exp(-((1+i)i)) using the exponential property and simplify the expression to get the result.