# physics

posted by .

A small block of mass m can slide along the frictionless loop-the loop. The block is released from rest at point P, at height h =5R above the bottom of the loop. How much work does the gravitational force do on the block as the block travels from point P to a) point Q (which has a height R) b) the top of the loop? If the gravitational poteintal energy of the block -earth system is taken to be zero at the bottom of the loop what is that potential energy when the block is c) at point P d) at point Q and e) at the top of the loop?

a) The block is at potental enrgy then it goes to kinetic enrgy . so would i use mgh= 1/2mv^2?
b) I don't really get what to do here.
c)When the potential energy of the block is zero at the bottom of the loop whould this really make a difference in the answers to c), d) and e)? Wouldn't it be the same equation as above?

a/ Yes, but the mgh height is from the top starting point vertically to Q.
b. PE will be mgh where h is the vertical height from the bottom to the point. For instance, at the top of the loop, h is 2R, so gpe is 2mgr

## Similar Questions

1. ### Physics - drwls?

A small block of mass m = 4.0 kg can slide along the frictionless loop-the-loop. The block is released from rest at point P, at height h = 23R above the bottom of the loop (R is the radius of the loop). Express your answers in the …
2. ### Physics

A massless spring of constant k = 91.0 N/m is fixed on the left side of a level track. A block of mass m = 0.50 kg is pressed against the spring and compresses it a distance of d. The block (initially at rest) is then released and …
3. ### Physics

A small block of mass m=1.9kg slides, without friction, along the loop-the-loop track shown. The block starts from the point P a distance h=52.0m above the bottom of the loop of radius R=19.0m. What is the kinetic ennergy of the mass …
4. ### Physics

A small block of mass m=1.9kg slides, without friction, along the loop-the-loop track shown. The block starts from the point P a distance h=52.0m above the bottom of the loop of radius R=19.0m. What is the kinetic ennergy of the mass …
5. ### physics

A small block of mass m = 1.1 kg slides, without friction, along the loop-the-loop track shown. The block starts from the point P a distance h = 56.0 m above the bottom of the loop of radius R = 17.0 m. What is the kinetic energy of …
6. ### physics

A small block of mass m = 1.1 kg slides, without friction, along the loop-the-loop track shown. The block starts from the point P a distance h = 56.0 m above the bottom of the loop of radius R = 17.0 m. What is the kinetic energy of …
7. ### physics

A massless spring of constant k =60.9 N/m is fixed on the left side of a level track. A block of mass m = 0.7 kg is pressed against the spring and compresses it a distance d, as in the figure below. The block (initially at rest) is …
8. ### Physics

In the figure below, a small block of mass m = 0.034 kg can slide along the frictionless loop-the-loop, with loop radius 8 cm. The block is released from rest at point P, at height h = 7R above the bottom of the loop. (For all parts, …
9. ### Physics

A small block of mass m = 1.3 kg slides, without friction, along the loop-the-loop track shown. The block starts from the point P a distance h = 54.0 m above the bottom of the loop of radius R = 19.0 m. What is the kinetic energy of …
10. ### physics

A small block of mass 42 kg slides along a frictionless loop-the-loop track. The radius of the loop is 5 meters. At what height above the bottom of the track should the block be released from so that it just makes it through the loop-the-loop …

More Similar Questions