# Calculus

posted by .

Note that

pi
lim arctan(x ) = ----
x -> +oo 2

Now evaluate

/ pi \
lim |arctan(x ) - -----| x
x -> +oo \ 2 /

I'm not exactly sure how to attempt it. I have tried h'opital's rule but I don't believe you can use it here. Any help will be greatly appreciated!

Sorry the question came out weirder than i had originally posted it

it is the lim as x approaches positive infinity of (arctanx - pi/2)x

Use that:

arctan(x) = pi/2 - arctan(1/x)

If you take a right triangle then you can easily see where this relation comes from. If x is the ratio between two right sides then 1/x is the inverse of that ratio, so arctan(1/x) will yield the other angle which is pi minus arctan(x).

If x approaches infinity, 1/x approaches zero, so you can use the series expansion of the arctangent function around x = 0:

arctan(x) = x - x^3/3 + x^5/5 -...
for x in a neighborhood of zero --->

arctan(1/x) = x^(-1) - x^(-3)/3 + x^(-5)/5 -..

for x -->infinity

Therefore for large x:

arctan(x) = pi/2 - arctan(1/x)=

pi/2 - 1/x + 1/(3 x^3) - ...

And you can now read-off the desired limit :)

## Similar Questions

1. ### limiting position of the particle

A particle moves along the x axis so that its position at any time t>= 0 is given by x = arctan t What is the limiting position of the particle as t approaches infinity?
2. ### calculus

Let f be a function defined by f(x)= arctan x/2 + arctan x. the value of f'(0) is?
3. ### CALCULUS

Evaluate each of the following. (a) lim x->0(e^x)-1-x/ x^2 (b) lim x->0 x-sinx/x^3 (c) lim x->infinity (In x)^2/x (d) lim x->0+ (sinx)In x (e) lim x->0+ (cos3x)^5/x (f) lim x->1+ ((1/x-1) -(1/In x))
4. ### Math

Arrange these in order from least to greatest: arctan(-sqrt3), arctan 0, arctan(1/2) So far I got the first two values, arctan(-sqrt3), and that's 150 degrees. Arctan 0 would be zero degrees. I'll use just one answer for now, but I …
5. ### calculus

just wondering if someoen could help me with this limit..: lim arctan[(x^2 - 4)/(3x^2-6x)] x->2
6. ### calculus

Now we prove Machin's formula using the tangent addition formula: tan(A+B)= tanA+tanB/1-tanAtanB. If A= arctan(120/119) and B= -arctan(1/239), how do you show that arctan(120/119)-arctan(1/239)=arctan1?
7. ### math

i need some serious help with limits in pre-calc. here are a few questions that i really do not understand. 1. Evaluate: lim (3x^3-2x^2+5) x--> -1 2. Evaluate: lim [ln(4x+1) x-->2 3. Evaluate: lim[cos(pi x/3)] x-->2 4. Evaluate: …
8. ### Calc

Find the integral from -∞ to -1 of 1/(1+x²) dx. I started working the problem out, and so far I got the lim as z→-∞ of [arctan (-1) - arctan (z)]. I'm a little bit confused exactly what is means when you plug -∞ …
9. ### precal

The values of x that are solutions to the equation cos^(2)x=sin2x in the interval [0, pi] are a. arctan(1/2) only b. arctan(1/2) and pi c. arctan(1/2) and 0 d. arctan(1/2) and (pi/2) e. arctan(1/2), o, and (pi/2)
10. ### Calculus

Use continuity to evaluate. as x approaches 2, lim arctan((2x^2-8)/(3x^2-6x))

More Similar Questions