Physics

posted by .

Runner A is initially 6.0 km west of a flagpole and is running with a constant velocity of 9. km/h due east. Runner B is initially 5.0 km east of the flagpole and is running with a constant velocity of 8.0 km/h due west. How far are the runners from the flagpole when their paths cross?


I did it this way.
time for A to get to the flag pole is t = d/r = 6/9 = 0.667 hour.

time for B to get to the flag pole is t = d/r = 5/8 = 0.625 hour.

That means runner B gets to the flag pole first and will still be running west BEFORE runner A gets to the flag pole. Thus, runner B will run the 5 km + a distance x and runner A will run 6 - x. Setting that up.
Runner A. t = (6-x)/9
Runner B. t = (5+x)/8.
Now set the times equal and solve for x.
(6-x)/9 = (5+x)/8

Their paths will cross at 6 km - x km and 5 km + x km.
x is the distance from the flag pole when their paths cross.

I hope this helps.

  • Physics -

    is it 0.176

  • Physics -

    yes, it is

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. physics

    Runner A is initially 4.6 km west of a flagpole and is running with a constant velocity of 4.8 km/h due east. Runner B is initially 7.4 km east of the flagpole and is running with a constant velocity of 6.4 km/h due west. What will …
  2. Physics

    Runner A is initially 7.0 km west of a flagpole and is running with a constant velocity of 6.5 km/h due east. Runner B is initially 8.0 km east of the flagpole and is running with a constant velocity of 7.5 km/h due west. How far are …
  3. Physics

    Runner A is initially 2.4 km west of a flagpole and is running with a constant velocity of 8.4 km/h due east. Runner B is initially 2.2 km east of the flagpole and is running with a constant velocity of 7.4 km/h due west. What will …
  4. Physics

    Runner A is initially 2.4 km west of a flagpole and is running with a constant velocity of 8.4 km/h due east. Runner B is initially 2.2 km east of the flagpole and is running with a constant velocity of 7.4 km/h due west. What will …
  5. Physics

    Runner A is initially 3.4 km west of a flagpole and is running with a constant velocity of 5.2 km/h due east. Runner B is initially 5.6 km east of the flagpole and is running with a constant velocity of 5.0 km/h due west. What will …
  6. Physics

    Runner A is initially 5.3km west of a flagpole and is running with a constant velocity of 8.8km/hr due east. Runner B is initially 4.2km east of the flagpole and is running with a constant velocity of 7.9km/hr due west. How far are …
  7. physics

    Runner A is initially 5.3 km west of a flagpole and is running with a constant velocity of 8.4 km/h due east. Runner B is initially 4.5 km east of the flagpole and is running with a constant velocity of 7.1 km/h due west. How far are …
  8. physics

    Runner A is initially 6.0 km west of a flagpole and is running with a constant velocity of 7.8 km/h due east. Runner B is initially 4.2 km east of the flagpole and is running with a constant velocity of 7.6 km/h due west. What will …
  9. physics

    Runner A is initially 5.3 km west of a flagpole and is running with a constant velocity of 8.1 km/h due east. Runner B is initially 4.7 km east of the flagpole and is running with a constant velocity of 7.8 km/h due west. How far are …
  10. PHYSICS

    Runner A is initially 5.3 km west of a flagpole and is running with a constant velocity of 8.1 km/h due east. Runner B is initially 4.7 km east of the flagpole and is running with a constant velocity of 7.8 km/h due west. How far are …

More Similar Questions