# math

posted by .

The roots of the eqn x^4 - 3x^2 + 5x - 2 = 0 are a, b, c, d, and a^n + b^n + c^n + d^n is denoted by S~n. The equation of the roots a^2, b^2, c^2, d^2 is y^4 - 6y^3 + 5y^2 - 13y + 4 = 0. State the value of S~2 and hence show that S~8 = 6S~6 - 5S~4 + 62.

## Similar Questions

1. ### Math

Roots Ok, what about roots? Roots of polynomials?
2. ### further mathematics

The roots of the eqn, x^4 + px^3 + qx^2 + rx + s = 0 where p, q, r, s are constants and s does not equal to 0, are a, b, c, d. (i) a^2 + b^2 + c^2 + d^2 = p^2 -2q (in terms of p & q) (ii) 1/a + 1/b + 1/c + 1/d = -r/s (in terms of r …
3. ### Precalculus

"Show that x^6 - 7x^3 - 8 = 0 has a quadratic form. Then find the two real roots and the four imaginary roots of this equation." I used synthetic division to get the real roots 2 and -1, but I can't figure out how to get the imaginary …
4. ### Algebra

The equation x^2+px+q=0, q cannot be equal to 0, has two unequal roots such that the squares of the roots are the same as the two roots. Calculate the product pq. I think the obvious root would be one but the second roots i just can't …
5. ### maths

Sachin and rahul attempted to slove a quadratic eqn. Sachin made a mistake in writing down the constant term and ended up it roots (4,3). Rahul made a mistake in writing down coefficient of x to get roots (3,2) the correct roots of …
6. ### maths

The quadratic eqn x²-6x+a=0 and x²-cx+6=0 have one root in common. The other roots of the first and second eqn are integers in the ratio 4:3. Then the common roots is-
7. ### maths

If a,b and c € R, then prove that the roots of the eqn 1/(x-a) + 1/(x-b) + 1/(x-c) =0 are always real and cannot have roots if a=b=c.
8. ### math

If the roots of the eqn x²-2cx+ab=0 are real and unequal, then prove that the roots of x²-2(a+b)x+a²+b²+2c²=0 will be imaginary.