math

posted by .

The roots of the eqn x^4 - 3x^2 + 5x - 2 = 0 are a, b, c, d, and a^n + b^n + c^n + d^n is denoted by S~n. The equation of the roots a^2, b^2, c^2, d^2 is y^4 - 6y^3 + 5y^2 - 13y + 4 = 0. State the value of S~2 and hence show that S~8 = 6S~6 - 5S~4 + 62.


I answered this question this morning. Check the page previous to this. Let me know if you have questions about it. The post should be near the bottom of the thread begun by jack.


i do not understand the last part with the S~8 = 6S~6 - 5S~4 + 62.


Ok, that does require a little calculating -and observation.
If you take the poly
x^4+px^3+qx^2+rx+s with roots a,b,c,d and multiply it by x^4-px^3+qx^2-rx+s you get a poly whose terms are x^8,x^6,x^4,x^2,x^0(constant term) and the roots are a^2,b^2,c^2,d^2
The coefficient of the x^6 term is s-2.
If you make the sub. y=x^2 you get a poly y^4+p1y^3+p2y^2+p3y+p4. If you repeat this proces that we did above, i.e. negate the coefficients of the odd power terms and multiply them you get a poly whose terms are y^8,,,y^0 all even numbers. The coefficient of the y^6 term is S-4. If you do the process once more you get S-8.
To evaluate that expression the questioner is asking you to calculate S-4, S-6 and S-8 and verify they satisfy that equation, that's all.
To calculat S-6 I observed that in the first y polynomial the coefficient of y^3 is -s1, of y^2 is s2 and of y is -s3 and that (s1)^3-3s1s2+3s3=S-2 where the lower case s's are the symmetric functions. I'm not sure if you've been asked to calculate that or not. Let me know if this explains matters.


I just noticed a couple typos here. This line;
"To calculat S-6 I observed that in the first y polynomial the coefficient of y^3 is -s1, of y^2 is s2 and of y is -s3 and that (s1)^3-3s1s2+3s3=S-2 "
That should be S-6 not S-2 at the end. The other typos are minor.


i understand better now, thanks


You're welcome, feel free to post if anything's not clear. I should mention that this would be a fairly challenging problem for college students. Nice job doing this here.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Math

    Roots Ok, what about roots? Roots of polynomials?
  2. further mathematics

    The roots of the eqn, x^4 + px^3 + qx^2 + rx + s = 0 where p, q, r, s are constants and s does not equal to 0, are a, b, c, d. (i) a^2 + b^2 + c^2 + d^2 = p^2 -2q (in terms of p & q) (ii) 1/a + 1/b + 1/c + 1/d = -r/s (in terms of r …
  3. math

    The roots of the eqn x^4 - 3x^2 + 5x - 2 = 0 are a, b, c, d, and a^n + b^n + c^n + d^n is denoted by S~n. The equation of the roots a^2, b^2, c^2, d^2 is y^4 - 6y^3 + 5y^2 - 13y + 4 = 0. State the value of S~2 and hence show that S~8 …
  4. Precalculus

    "Show that x^6 - 7x^3 - 8 = 0 has a quadratic form. Then find the two real roots and the four imaginary roots of this equation." I used synthetic division to get the real roots 2 and -1, but I can't figure out how to get the imaginary …
  5. maths

    Sachin and rahul attempted to slove a quadratic eqn. Sachin made a mistake in writing down the constant term and ended up it roots (4,3). Rahul made a mistake in writing down coefficient of x to get roots (3,2) the correct roots of …
  6. maths

    The quadratic eqn x²-6x+a=0 and x²-cx+6=0 have one root in common. The other roots of the first and second eqn are integers in the ratio 4:3. Then the common roots is-
  7. maths

    If a,b and c € R, then prove that the roots of the eqn 1/(x-a) + 1/(x-b) + 1/(x-c) =0 are always real and cannot have roots if a=b=c.
  8. math

    If the roots of the eqn x²-2cx+ab=0 are real and unequal, then prove that the roots of x²-2(a+b)x+a²+b²+2c²=0 will be imaginary.
  9. maths -quadratic eqn

    one of the roots of the quadratic equation x^2-(4+k)x+12=0 fine, 1)the roots of the equation 2)the possible values of k please show your workings thanks in advance.
  10. maths-equadratic eqn

    one of the roots of the quadratic equation x^2-(4+k)x+12=0 find, 1)the roots of the equation 2)the possible values of k please show your workings thanks in advance.

More Similar Questions