Tuesday

May 3, 2016
Number of results: 58,595

**Physics **

The 22 cm diameter disk in the figure below can rotate on an axle through its center. At the end of this problem, you will calculate the magnitude and direction of the net torque about the axle when F = 22 N. The net torque is just the sum of the individual torques. Depending ...
*October 28, 2014 by Jenny*

**physics**

Given. a = 25.1 cm and b = 51.2 cm and the forces are F1 = 10.3 N, F2 = 10.6 N and F3 = 14.7 N. The angle between F2 and the horizontal is θ = 27.9 °. Find the magnitude of the net torque on the wheel about the axle through O. Answer in units of N m.
*October 19, 2014 by sim*

**physics**

The 17.9 cm diameter disk rotates on an axle through its center. F1=22.1 N, F2=32.4 N, F3=32.4 N, F4=22.1 N, and d=4.74 cm. What is the net torque about the axle?
*October 12, 2008 by Sara*

**physics**

The 17.9 cm diameter disk rotates on an axle through its center. F1=22.1 N, F2=32.4 N, F3=32.4 N, F4=22.1 N, and d=4.74 cm. What is the net torque about the axle?
*October 15, 2008 by Adam*

**physics**

Find the net torque on the wheel in the figure below about the axle through O perpendicular to the page, taking a = 11.0 cm and b = 23.0 cm. (Indicate the direction with the sign of your answer. Assume that the positive direction is counterclockwise.)
*April 30, 2012 by Anonymous*

**physics**

Find the net torque on the wheel in the figure below about the axle through O perpendicular to the page, taking a = 5.00 cm and b = 23.0 cm. (Indicate the direction with the sign of your answer. Assume that the positive direction is counterclockwise.) f1= 10 f2= 9 f3=12
*March 4, 2015 by alba*

**Physics please check**

A uniform solid disk with a mass of 32.3 kg and a radius of 0.414 m is free to rotate about a frictionless axle. Forces of 90.0 N and 125 N are applied to the disk. (a) What is the net torque produced by the two forces? (Assume counterclockwise is the positive direction.) (b) ...
*April 24, 2007 by Mary*

**Physics**

In the figure below, a wheel of radius 0.275 m is mounted on a frictionless horizontal axle. A massless cord is wrapped around the wheel and attached to a 1.95 kg box that slides on a frictionless surface inclined at angle θ = 32.7 ° with the horizontal. The box ...
*April 3, 2016 by Kimberley*

**Physics**

A wheel with rotational inertia I is mounted on a fixed, fricitonless axle. The angular speed w of the wheel is inccreased from zero to w_f in a time interval T. 1: What is the average net torque on the wheel during the time interval, T? a) w_f/T b)w_f/T^2 c) Iw_f^2/T d)Iw_f/T...
*March 25, 2007 by Tammy*

**Physics**

Can you please help with this problem. I don't know how to solve it at all. A uniform solid disk with a mass of 32.3 kg and a radius of 0.464 m is free to rotate about a frictionless axle. Forces of 90.0 N and 125 N are applied to the disk. (a) What is the net torque produced ...
*May 8, 2007 by Jim*

**physics**

A merry-go-round in the park has a radius of 1.8 m and a rotational inertia of 900kgm^2. A child pushes the merry-go-round with a constant force of 80 N applied at the edges and parallel to the edge. A frictional torque of 12 Nm acts at the axle of the merry-go-round. a. what ...
*October 17, 2010 by Alyssa*

**Physics**

A stiff uniform wire of mass M_0 and length L_0 is cut, bent, and the parts soldered together so that it forms a circular wheel having four identical spokes coming out from the center. None of the wire is wasted, and you can neglect the mass of the solder. What is the moment ...
*April 5, 2012 by Joe*

**Maths**

A ferris wheel has an axle standing 38m off the ground and a radius of 35m. The wheel takes 5 minutes to complete one revolution. The wheel moves in clockwise motion and you are sitting in one of the carriages which is horizontally in line with the axle, moving upwards. Form ...
*May 1, 2012 by Raina*

**marhs**

A wheel is free to rotate about its fixed axle. A spring with constant k = 290 N/m is attached to one of its spokes a distance r = 23 cm from the axle, as shown in the figure. (a) Assuming that the wheel is a hoop of mass m = 490 g and radius R = 0.97 m, what is the angular ...
*November 15, 2014 by edward*

**Physics**

Forces F1=7.50N and F2=5.30N are applied tangentially to a wheel with radius 0.330 m. What is the net torque on the wheel due to these two forces for an axis perpendicular to the wheel and passing through its center? It depends upon whether or not the forces F1 and F2 are both...
*March 27, 2007 by Karla*

**college**

A typical ten-pound car wheel has a moment of inertia of about 0.35 kg*m^2. The wheel rotates about the axle at a constant angular speed making 45.0 full revolutions in a time interval of 7.00 sec . What is the rotational kinetic energy of the rotating wheel?
*October 25, 2009 by Anonymous*

**physics**

A typical ten-pound car wheel has a moment of inertia of about 0.35 kg*m^2. The wheel rotates about the axle at a constant angular speed making 45.0 full revolutions in a time interval of 7.00 sec . What is the rotational kinetic energy of the rotating wheel?
*October 26, 2009 by Anonymous*

**physics**

A typical ten-pound car wheel has a moment of inertia of about 0.35 kg*m^2. The wheel rotates about the axle at a constant angular speed making 45.0 full revolutions in a time interval of 7.00 sec . What is the rotational kinetic energy of the rotating wheel?
*October 26, 2009 by Anonymous*

**Physic**

A wheel-and-axle system shown consists of two coaxial wheels of radius r = 2 meters and R = 6 meters. The forces applied to the system as shown in the diagram are: F1 = 80 N F2 = 80 N F3 = 40 N F4 = 30 N If counterclockwise is positive, what is the net torque on this system?
*November 25, 2012 by Anonymous*

**Physic**

A wheel-and-axle system shown consists of two coaxial wheels of radius r = 2 meters and R = 6 meters. The forces applied to the system as shown in the diagram are: F1 = 80 N F2 = 80 N F3 = 40 N F4 = 30 N If counterclockwise is positive, what is the net torque on this system?
*November 25, 2012 by Anonymous*

**physics**

a wheel radius 0.25 m is mounted on a frictionless horizontal axle. the moment of inertia of the wheel about the axis is 0.040. a light cord wrapped around the wheel supports the 0.50 kg of box. the wheel is released from the rest. what is the magnitude of acceleration of the ...
*April 28, 2013 by sam*

**Physics**

A 2000kg ferris wheel accelerates from rest to an angular speed of 2.0 rad/s in 12 secs. Approximate the ferris wheel as a circular disk with a radius of 30m. what iss the net torque on the wheel
*January 31, 2010 by C. Standard *

**Physics**

Am I correct? Which statement explains why a bicycle is stable when a rider pedals quickly? (Points : 1) The angular momentum vector resists directional change. <------- Applying a torque does not change the angular velocity of the wheel. A rotating object acts like a ...
*February 3, 2014 by Me and I*

**Physics**

A merry-go-round in the park has a radius of 1.8 m and a rotational inertia of 900 kgm^2. A child pushes the merry-go-round with a constant force of 80 N applied at the edge and parallel to the edge. A frictional torque of 12 Nm acts at the axle of the merry-go-round. a. What ...
*January 20, 2010 by Bell*

**Please check solution**

A uniform solid disk with a mass of 40.3 kg and a radius of 0.454 m is free to rotate about a frictionless axle. Forces of 90.0 N and 125 N are applied to the disk (a) What is the net torque produced by the two forces? (Assume counterclockwise is the positive direction (b) ...
*May 7, 2007 by Papito*

**Physics**

A wheel and axle arrangement has an axle with a diameter of 25cm. A rope is wrapped around the axle and is supporting a load of 2 tonnes. 1)If the mechanical advantage of the system is 30, determine the diameter of the wheel. ANSWER = m 2)Determine the effort required to ...
*May 20, 2013 by Danny*

**physics**

A typical ten-pound car wheel has a moment of inertia of about . The wheel rotates about the axle at a constant angular speed making 30.0 full revolutions in a time interval of 5.00 .
*December 6, 2009 by christina*

**physics**

A 715 gram grinding wheel 29.5 {\rm cm} in diameter is in the shape of a uniform solid disk. (We can ignore the small hole at the center.) When it is in use, it turns at a constant 210 {\rm rpm} about an axle perpendicular to its face through its center. When the power switch ...
*April 4, 2012 by Anonymous*

**College physics**

Consider the two situations. In the first a machine must pull a box up a rough slope at constant speed. The mass of the box is 800 kg, the coefficient of kinetic friction is 0.2, and the slope is inclined at 15 degrees to the horizontal. In the second situation the machine ...
*March 27, 2012 by Cody*

**12th grade**

A bicycle wheel has a radius of 0.330 m and a rim whose mass is 1.20 kg. The wheel has 50 spokes, each with a mass of 0.010 kg. a.) Calculate the moment of inertia of the rim about the axle. b.) Determine the moment of inertia of any one spoke, assuming it to be a long, thin ...
*March 10, 2010 by Janelle*

**Physics - Rotational Mechanics**

The combination of an applied force and a constant frictional force produces a constant total torque of 35.8 Nm on a wheel rotating about a fixed axis. The applied force acts for 5.95 s. During this time the angular speed of the wheel increases from 0 to 9.9 rad/s. The applied...
*March 4, 2007 by John*

**Physics**

A uniform disk with mass m = 8.54 kg and radius R = 1.35 m lies in the x-y plane and centered at the origin. Three forces act in the +y-direction on the disk: 1) a force 333 N at the edge of the disk on the +x-axis, 2) a force 333 N at the edge of the disk on the –y-axis, and ...
*November 10, 2014 by stewart*

**Physics**

A steel bicycle wheel (without the rubber tire) is rotating freely with an angular speed of 18.00 rad/s. The temperature of the wheel changes from -100.0 to +300.0 degrees Celcius. No net external torque acts on the wheel, and the mass of the spokes is negligible. (a) Does the...
*February 15, 2011 by Heather*

**Physics/Chemistry**

A steel bicycle wheel (without the rubber tire) is rotating freely with an angular speed of 18.00 rad/s. The temperature of the wheel changes from -100.0 to +300.0 degrees Celcius. No net external torque acts on the wheel, and the mass of the spokes is negligible. (a) Does ...
*February 15, 2011 by Heather*

**Physics**

Simple Machines A simple wheel and axle has a wheel diameter of 2.3m and an axle diameter of 92mm. If an effort of 26N is required to raise a mass of 16 kg what is the efficiency of the machine? A- 2.46% B- 95.3% C- 24.1% D- 20.1% E- 65.5% I am having a problem determining ...
*May 11, 2013 by Danny*

**Physics (torque)**

The steering wheel of a certain vehicle has a diameter of 38.9 cm, and it turns a shaft that is 8.3 cm in diameter. If a 85.9 N force is needed to turn the steering wheel, what torque is exerted on the wheel?
*November 16, 2012 by Anonymous*

**Math**

A river does 6,500 J of work on a water wheel every second. The wheel's efficiency is 12%. a. How much work in joules can the axle of the wheel do? b. What is the power output of the wheel in 1 s?
*November 3, 2012 by Leah*

**physical science**

A river does 6,500 j of work on a water wheel every second. The wheel efficiency is 12%. A. How much work in joules can the axle of the wheel do? B. What is the power output of the wheel in 1 s?
*November 6, 2014 by Aurora Simmons*

**science**

A wheel with a radius of 20 cm is attached to an axle with a radius of 1cm. An effort force of 100 N on the wheel counters a resistance force of what on the axle?
*February 17, 2012 by Micheal*

**Physics**

A wheel with a radius of 20 cm is attached to an axle with a radius of 1cm. An effort force of 100 N on the wheel counters a resistance force of what on the axle?
*February 17, 2012 by Micheal*

**physics**

A 5.0 kg \rm kg, 52-cm \rm cm-diameter cylinder rotates on an axle passing through one edge. The axle is parallel to the floor. The cylinder is held with the center of mass at the same height as the axle, then released. a)What is the magnitude of the cylinder's initial angular...
*December 6, 2013 by Chloe *

**Science**

You are holding the axle of a bicycle wheel with radius 30 cm and mass 1.07 kg. You get the wheel spinning at a rate of 79 rpm and then stop it by pressing the tire against the pavement. You notice that it takes 1.11 s for the wheel to come to a complete stop. What is the ...
*November 26, 2012 by Gerrard*

**physics**

A uniform disk with a mass of 27.3 kg and a radius of 0.309 m is free to rotate about a frictionless axle. Forces of 90.0 N and 125 N are applied to the disk, as the drawing indicates. (a) What is the net torque produced by the two forces? (b) What is the angular acceleration ...
*November 2, 2011 by Sami*

**mechanics**

Find the total kinetic energy of a 1500 g wheel, 700 mm in diameter, rolling across a level surface at 650 rpm. Assume that the wheel can be considered as a hoop. (b) For the wheel in part (a), calculate the torque required to decrease its rotational speed from 400 rpm to rest...
*May 14, 2013 by george*

**physics**

A large wooden wheel of radius R and the moment of inertia I is mounted on an axle so as to rotate freely. A bullet of mass m and speed v is shot tangential to the wheel and strike its edge, lodging in the wheel’s rim. If the wheel was originally at rest, what is its rotation ...
*December 4, 2010 by Gee*

**Physics**

You are holding the axle of a bicycle wheel with radius 35 cm and mass 1 kg. You get the wheel spinning at a rate of 55 rpm and then stop it by pressing the tire against the pavement. You notice that it takes 2.0 s for the wheel to come to a complete stop. What is the angular ...
*November 6, 2014 by Ashely*

**Physic (concepts-please check my thoughts)**

A net torque applied to a rigid object always tends to produce? a)translational acceleration b) rotational equilibrium c) rotational acceleration d) rotational inertia e) none of these work (c) Torque produces torsion and tends to produce rotation. The net torque acting on a ...
*December 10, 2006 by Diane*

**Physics**

A simple wheel and axle is used to life a bucket out of a well. The radii of the wheel and axle are 20 cm and 4 cm, respectively. Determine: 1. The velocity ratio (and so the IMA), 2. The thoretical effort required to life a load of 30 N assuming no energy loosses, 3. The ...
*March 5, 2015 by Eleni*

**physics help please**

A torque of 1.15 N·m is applied to a bicycle wheel of radius 36 cm and mass 0.83 kg. Treating the wheel as a hoop, find its angular acceleration. ?rad/s2 I know accel is alpha times the radius...where does torque tie in?
*October 22, 2008 by kelsey*

**physics-frictional torque**

A string that passes over a pulley has a 0.321 kg mass attached to one end and a 0.655 kg mass attached to the other end. The pulley, which is a disk of radius 9.50 cm, has friction in its axle. What is the magnitude of the frictional torque that must be exerted by the axle if...
*November 27, 2010 by Cerra*

**Physics**

The combination of an applied force produces a constant total torque of 39.6 N.m on a wheel rotating about a fixed axis. The applied force acts for 5.3 s. During this time, the angular speed of the wheel increases from 0 to 9.8 rad/s. Determine the moment of inertia of the wheel.
*April 26, 2015 by Exes*

**Physics**

A 6 kg grinding wheel of radius 0.2 m rotates at a constant rotational frequency of 4 rad/s when an object makes contact with the outer edge of the wheel. Friction causes the wheel to stop in 2 seconds. What is the average torque on the wheel by the frictional force?
*February 5, 2013 by Physics*

**Science**

A 6 kg grinding wheel of radius 0.2 m rotates at a constant rotational frequency of 4 rad/s when an object makes contact with the outer edge of the wheel. Friction causes the wheel to stop in 2 seconds. What is the average torque on the wheel by the frictional force?
*February 5, 2013 by Physics*

**physics**

for an object in equillibrium the net torque acting on it vanishes only if each torque is calculated about?
*May 25, 2012 by owen*

**physics**

The wheel of a car has a radius of 0.390 m. The engine of the car applies a torque of 466 N·m to this wheel, which does not slip against the road surface. Since the wheel does not slip, the road must be applying a force of static friction to the wheel that produces a ...
*December 9, 2011 by nagham*

**Physics**

The wheel of a car has a radius of 0.390 m. The engine of the car applies a torque of 282 N · m to this wheel, which does not slip against the road surface. Since the wheel does not slip, the road must be applying a force of static friction to the wheel that produces a ...
*November 15, 2012 by Elizabeth*

**physics**

The motor of a fan turns a small wheel of radius rm = 1.60 cm.This wheel turns a belt, which is attached to a wheel of radius rf = 2.90 cmthat is mounted to the axle of the fan blades. Measured from the center of this axle, the tip of the fan blades are at a distance rb = 11.0...
*October 21, 2011 by mymi*

**Physics**

an automobile tire has a radius of 0.350M, and its center forward with a liner speed of v=13.0m/s. (a) Determine the angular speed of the wheel. (Assume that there is no slipping of the surfaces in contact during the rolling motion.) (b) Relative to the axle, what is the ...
*March 14, 2007 by CJ*

**Physics- Simple machines**

A wheel and axle arrangement has an axle with a diameter of 25cm. A rope is wrapped around the axle and is supporting a load of 2 tonnes. 1) If the mechanical advantage of the system is 30, determine the diameter of the wheel___________m. 2)Determine the effort required to ...
*May 12, 2013 by Danny*

**general physics**

An axle of a mass of 10 kg, length 10 cm and radius .1 m is free to rotate about the axis which runs the length of the axle, throuhh it's center. A chain of mass 4kg is fastened to the axle at one end, wound exactly 6 times around the axle, and a rock of mass 1.8 kg attached ...
*December 9, 2014 by sara*

**Physics**

There is a bicycle wheel resting against a small step whose height is h = 0.132 m. The weight and radius of the wheel are W = 27.3 N and r = 0.324 m, respectively. A horizontal force is applied to the axle of the wheel. As the magnitude of increases, there comes a time when ...
*November 16, 2012 by 4319*

**physics**

A wheel of diameter 28.0 cm is constrained to rotate in the xy plane, about the z axis, which passes through its center. A force = (-38.0 + 39.0 ) N acts at a point on the edge of the wheel that lies exactly on the x axis at a particular instant. What is the torque about the ...
*January 2, 2012 by Joe*

**math (vectors) & physics**

In unit-vector notation, what is the net torque about the origin on a flea located at coordinates (-2.0, 4.0 m, -1.0 m) when forces F1 = (-4.0 N) k and F2 = (-5.0 N) j act on the flea? _____________________________________ Torque is the cross product of the radius vector and ...
*March 28, 2007 by sam*

**physics**

The figure shows a bicycle wheel resting against a small step whose height is h = 0.110 m. The weight and radius of the wheel are W = 26.0 N and r = 0.370 m. A horizontal force is applied to the axle of the wheel. As the magnitude of increases, there comes a time when the ...
*March 26, 2011 by Alicia*

**physics**

The figure shows a bicycle wheel resting against a small step whose height is h = 0.120 m. The weight and radius of the wheel are W = 20.0 N and r = 0.340 m. A horizontal force is applied to the axle of the wheel. As the magnitude of increases, there comes a time when the ...
*October 22, 2014 by ram*

**physics**

When a 19.9 kg wheel with an angular speed of 3.10 rad/s is disconnected from a motor, a 0.124 N · m frictional torque slows the wheel to a stop. If the wheel has radius of 0.71 m, how long will it take for the wheel to come to rest after being disconnected from the motor?
*November 18, 2011 by Alex*

**Physics**

A cord is wrapped around the rim of a wheel .250 m in radius, and a steady pull of 40.0 N is exerted on the cord. The wheel is mounted on frictionless bearings on a horizontal shaft through its center. The moment of inertia of the wheel about this shaft is 5.00kg*m^2. Compute ...
*March 27, 2007 by Karla*

**Physics **

A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 200 N applied to its edge causes the wheel to have an angular acceleration of 1.048 rad/s2. (a) What is the moment of ...
*October 28, 2014 by Brittany *

**physics**

A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 210 N applied to its edge causes the wheel to have an angular acceleration of 1.161 rad/s2. (b) What is the mass of the ...
*November 9, 2011 by jim*

**science**

a river does 6500J of work on a water wheel every second.The wheels efficiency is 12 percent.A)How much work in joules can the axle of the wheel do in a second? B)What is the power output of the wheel?
*March 3, 2013 by kayla*

**Physics**

A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 300 N applied to its edge causes the wheel to have an angular acceleration of 1.072 rad/s2. (a) What is the moment of ...
*December 5, 2012 by anonymous*

**Physics**

The combination of an applied force and a frictional force produces a constant total torque of 38.1 Nm on a wheel rotating about a fixed axis. The applied force acts for 7.00 s, during which time, the angular speed of the wheel increases from 2.40 rad/s to 12.5 rad/s. The ...
*April 26, 2010 by Tessa*

**Physics**

A rotating uniform-density disk of radius 0.6 m is mounted in the vertical plane. The axle is held up by supports that are not shown, and the disk is free to rotate on the nearly frictionless axle. The disk has mass 5.8 kg. A lump of clay with mass 0.5 kg falls and sticks to ...
*April 14, 2013 by Emily*

**physics**

A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 210 N applied to its edge causes the wheel to have an angular acceleration of 1.161 rad/s2. (a) What is the moment of ...
*November 9, 2011 by Anonymous*

**physics**

A large grinding wheel in the shape of a solid cylinder of radius 0.370m is free to rotate on a frictionless, vertical axle. A constant tangential force of 470 N applied to its edge causes the wheel to have an angular acceleration of 0.800 rad/s2. (a) What is the moment of ...
*November 11, 2012 by Anonymous*

**physic**

A grinding wheel of radius 0.280 m rotating on a frictionless axle is brought to rest by applying a constant friction force tangential to its rim. The constant torque produced by this force is 75.3 N · m. Find the magnitude of the friction force.
*July 29, 2012 by Anonymous*

**physics**

A grinding wheel of radius 0.370 m rotating on a frictionless axle is brought to rest by applying a constant friction force tangential to its rim. The constant torque produced by this force is 79.2 N • m. Find the magnitude of the friction force.
*December 9, 2012 by Anonymous*

**Physics- Elena please help!**

A large grinding wheel in the shape of a solid cylinder of radius 0.450m is free to rotate on a frictionless, vertical axle. A constant tangential force of 180 N applied to its edge causes the wheel to have an angular acceleration of 0.870 rad/s2. (a) What is the moment of ...
*November 6, 2012 by Anonymous*

**Physics 141**

A bicycle wheel resting against a small step whose height is h = 0.125 m. The weight and radius of the wheel are W = 23.1 N and r = 0.330 m, respectively. A horizontal force vector F is applied to the axle of the wheel. As the magnitude of vector F increases, there comes a ...
*April 5, 2014 by dakota22*

**physics**

A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 260 N applied to its edge causes the wheel to have an angular acceleration of 0.795 rad/s2. (a) What is the moment of ...
*November 15, 2012 by Shane*

**physics**

A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 250 N applied to its edge causes the wheel to have an angular acceleration of 1.053 rad/s2. (a) What is the moment of ...
*November 30, 2012 by heather*

**physics**

A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 280 N applied to its edge causes the wheel to have an angular acceleration of 0.960 rad/s2. (a) What is the moment of ...
*March 8, 2015 by alba*

**physics**

A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 270 N applied to its edge causes the wheel to have an angular acceleration of 0.854 rad/s2. (a) What is the moment of ...
*April 2, 2016 by joanna*

**Physics 141**

The drawing shows a bicycle wheel resting against a small step whose height is h = 0.125 m. The weight and radius of the wheel are W = 23.1 N and r = 0.330 m, respectively. A horizontal force vector F is applied to the axle of the wheel. As the magnitude of vector F increases...
*April 3, 2014 by dakota22*

**Physics 141**

The drawing shows a bicycle wheel resting against a small step whose height is h = 0.125 m. The weight and radius of the wheel are W = 23.1 N and r = 0.330 m, respectively. A horizontal force vector F is applied to the axle of the wheel. As the magnitude of vector F increases...
*April 5, 2014 by dakota22*

**physics 2...help please**

A wheel on a game show is given an initial angular speed of 1.33 rad/s. It comes to rest after rotating through 3/4 of a turn. (a) Find the average torque exerted on the wheel given that it is a disk of radius 0.76 m and mass 6.4 kg. ? N·m sorry, I'm having converting issues...
*October 22, 2008 by kelsey*

**physics**

A constant torque of 200Nm turns a wheel about its centre. The moment of inertia about this axis is 100kgm^2
*March 3, 2015 by ben*

**physics class-Help!!!**

A 3.0 m rod is pivoted about its left end.A force of 6.0 N is applied perpendicular to the rod at a distance of 1.2 m from the pivot causing a ccw torque, and a force of 5.2 is applied at the end of the rod 3.0 m from the pivot. The 5.2 N is at an angle of 30 degrees to the ...
*July 16, 2008 by Steph*

**PHYSICS**

A 3.0m rod is pivoted about its left end. A force of 6.0N is applied perpendicularto the rod at a distance of 1.2m from the pivot causing a ccw torque, and a force of 5.2N is applied at the end of the rod 3.0m fromt eh pivot. The 5.2N is at an angle if 30 degrees to the rod ...
*November 10, 2007 by magic 8 ball*

**Physics**

A constant retarding torque of 12 N*m stops a rolling 0.80 m diameter wheel in a distance of 15 m. How much work does the torque do?
*April 4, 2015 by Alan*

**Physics**

A rotating uniform-density disk of radius 0.7 m is mounted in the vertical plane. The axle is held up by supports that are not shown, and the disk is free to rotate on the nearly frictionless axle. The disk has mass 5 kg. A lump of clay with mass 0.3 kg falls and sticks to the...
*November 8, 2012 by Udit*

**physics**

An automobile tire has a radius of 0.335 m, and its center moves forward with a linear speed of v = 24.1 m/s. (a) Determine the angular speed of the wheel. (b) Relative to the axle, what is the tangential speed of a point located 0.243 m from the axle?
*July 16, 2013 by katie*

**Physics**

A 3.0-m rod is pivoted about its left end. A force of 6.0 N is applied perpendicular to the rod at a distance of 1.2m from the pivot causing a CCW torque, and a force of 5.2N is applied at the end of the rod 3.0m from the pivot. the 5.2N is at an angle of 30 degrees to the rod...
*June 8, 2010 by Katie*

**Physics**

A uniform disk of radius 0.5 m and mass 3.9 kg is rotating about its center of mass. Its moment of inertia about its center of mass is I=(1/2)mR^2. Its angular velocity as a function of time is given by (t)=7kt^6/t1^7 where k = 3.8 rad and t1= 5 s. Find the magnitude of the ...
*March 29, 2015 by Esha*

**Physics**

Two wheels have the same mass and radius of 4.0 kg and 0.35 m, respectively. One has (a) the shape of a hoop and the other (b) the shape of a solid disk. The wheels start from rest and have a constant angular acceleration with respect to a rotational axis that is perpendicular...
*November 4, 2011 by Jasmin*

**physics**

A small rubber wheel is used to drive a large pottery wheel, and they are mounted so that their circular edges touch. The small wheel has a radius of 1.7 cm and accelerates at the rate of 6.9 rad/s^2, and it is in contact with the pottery wheel (radius 27.0 cm) without ...
*October 19, 2010 by Lacey*

**Physics**

A solid cylinder is pivoted at its center about a frictionless axle. A force is applied to the outer radius of 1.27 m at an angle of 30 ◦ above the tangential and exerts a force of 5 N. A second force is applied by wrapping rope around the inner radius of 0.576 m, which ...
*February 28, 2015 by Caleb*

**physics**

If a 31.0 N·m torque on a wheel causes angular acceleration 22.0 rad/s2, what is the wheel's rotational inertia?
*April 7, 2010 by Jordan*

**Physics**

a 14.0 N·m torque on a wheel causes angular acceleration 11.3 rad/s2, what is the wheel's rotational inertia?
*November 6, 2012 by Torin*

**physics**

A wheel is mounted on a frictionless axle. A cord is wrapped around the wheel and a mass, m= 10kg, is attached at the end of the cord.
*April 28, 2015 by titu*