Tuesday

October 21, 2014

October 21, 2014

Number of results: 49,815

**physics**

Given. a = 25.1 cm and b = 51.2 cm and the forces are F1 = 10.3 N, F2 = 10.6 N and F3 = 14.7 N. The angle between F2 and the horizontal is θ = 27.9 °. Find the magnitude of the net torque on the wheel about the axle through O. Answer in units of N m.
*October 19, 2014 by sim*

**physics**

The 17.9 cm diameter disk rotates on an axle through its center. F1=22.1 N, F2=32.4 N, F3=32.4 N, F4=22.1 N, and d=4.74 cm. What is the net torque about the axle?
*October 12, 2008 by Sara*

**physics**

The 17.9 cm diameter disk rotates on an axle through its center. F1=22.1 N, F2=32.4 N, F3=32.4 N, F4=22.1 N, and d=4.74 cm. What is the net torque about the axle?
*October 15, 2008 by Adam*

**physics**

Find the net torque on the wheel in the figure below about the axle through O perpendicular to the page, taking a = 11.0 cm and b = 23.0 cm. (Indicate the direction with the sign of your answer. Assume that the positive direction is counterclockwise.)
*April 30, 2012 by Anonymous*

**Physics please check**

A uniform solid disk with a mass of 32.3 kg and a radius of 0.414 m is free to rotate about a frictionless axle. Forces of 90.0 N and 125 N are applied to the disk. (a) What is the net torque produced by the two forces? (Assume counterclockwise is the positive direction.) (b) ...
*April 24, 2007 by Mary*

**Physics**

A wheel with rotational inertia I is mounted on a fixed, fricitonless axle. The angular speed w of the wheel is inccreased from zero to w_f in a time interval T. 1: What is the average net torque on the wheel during the time interval, T? a) w_f/T b)w_f/T^2 c) Iw_f^2/T d)Iw_f/T...
*March 25, 2007 by Tammy*

**Physics**

Can you please help with this problem. I don't know how to solve it at all. A uniform solid disk with a mass of 32.3 kg and a radius of 0.464 m is free to rotate about a frictionless axle. Forces of 90.0 N and 125 N are applied to the disk. (a) What is the net torque produced ...
*May 8, 2007 by Jim*

**physics**

A merry-go-round in the park has a radius of 1.8 m and a rotational inertia of 900kgm^2. A child pushes the merry-go-round with a constant force of 80 N applied at the edges and parallel to the edge. A frictional torque of 12 Nm acts at the axle of the merry-go-round. a. what ...
*October 17, 2010 by Alyssa*

**Physics**

A stiff uniform wire of mass M_0 and length L_0 is cut, bent, and the parts soldered together so that it forms a circular wheel having four identical spokes coming out from the center. None of the wire is wasted, and you can neglect the mass of the solder. What is the moment ...
*April 5, 2012 by Joe*

**Maths**

A ferris wheel has an axle standing 38m off the ground and a radius of 35m. The wheel takes 5 minutes to complete one revolution. The wheel moves in clockwise motion and you are sitting in one of the carriages which is horizontally in line with the axle, moving upwards. Form ...
*May 1, 2012 by Raina*

**Physics**

Forces F1=7.50N and F2=5.30N are applied tangentially to a wheel with radius 0.330 m. What is the net torque on the wheel due to these two forces for an axis perpendicular to the wheel and passing through its center? It depends upon whether or not the forces F1 and F2 are both...
*March 27, 2007 by Karla*

**college**

A typical ten-pound car wheel has a moment of inertia of about 0.35 kg*m^2. The wheel rotates about the axle at a constant angular speed making 45.0 full revolutions in a time interval of 7.00 sec . What is the rotational kinetic energy of the rotating wheel?
*October 25, 2009 by Anonymous*

**physics**

A typical ten-pound car wheel has a moment of inertia of about 0.35 kg*m^2. The wheel rotates about the axle at a constant angular speed making 45.0 full revolutions in a time interval of 7.00 sec . What is the rotational kinetic energy of the rotating wheel?
*October 26, 2009 by Anonymous*

**physics**

A typical ten-pound car wheel has a moment of inertia of about 0.35 kg*m^2. The wheel rotates about the axle at a constant angular speed making 45.0 full revolutions in a time interval of 7.00 sec . What is the rotational kinetic energy of the rotating wheel?
*October 26, 2009 by Anonymous*

**physics**

a wheel radius 0.25 m is mounted on a frictionless horizontal axle. the moment of inertia of the wheel about the axis is 0.040. a light cord wrapped around the wheel supports the 0.50 kg of box. the wheel is released from the rest. what is the magnitude of acceleration of the ...
*April 28, 2013 by sam*

**Physic**

A wheel-and-axle system shown consists of two coaxial wheels of radius r = 2 meters and R = 6 meters. The forces applied to the system as shown in the diagram are: F1 = 80 N F2 = 80 N F3 = 40 N F4 = 30 N If counterclockwise is positive, what is the net torque on this system?
*November 25, 2012 by Anonymous*

**Physic**

A wheel-and-axle system shown consists of two coaxial wheels of radius r = 2 meters and R = 6 meters. The forces applied to the system as shown in the diagram are: F1 = 80 N F2 = 80 N F3 = 40 N F4 = 30 N If counterclockwise is positive, what is the net torque on this system?
*November 25, 2012 by Anonymous*

**Physics**

A 2000kg ferris wheel accelerates from rest to an angular speed of 2.0 rad/s in 12 secs. Approximate the ferris wheel as a circular disk with a radius of 30m. what iss the net torque on the wheel
*January 31, 2010 by C. Standard *

**Physics**

Am I correct? Which statement explains why a bicycle is stable when a rider pedals quickly? (Points : 1) The angular momentum vector resists directional change. <------- Applying a torque does not change the angular velocity of the wheel. A rotating object acts like a ...
*February 3, 2014 by Me and I*

**Physics**

A merry-go-round in the park has a radius of 1.8 m and a rotational inertia of 900 kgm^2. A child pushes the merry-go-round with a constant force of 80 N applied at the edge and parallel to the edge. A frictional torque of 12 Nm acts at the axle of the merry-go-round. a. What ...
*January 20, 2010 by Bell*

**Please check solution**

A uniform solid disk with a mass of 40.3 kg and a radius of 0.454 m is free to rotate about a frictionless axle. Forces of 90.0 N and 125 N are applied to the disk (a) What is the net torque produced by the two forces? (Assume counterclockwise is the positive direction (b) ...
*May 7, 2007 by Papito*

**Physics**

A wheel and axle arrangement has an axle with a diameter of 25cm. A rope is wrapped around the axle and is supporting a load of 2 tonnes. 1)If the mechanical advantage of the system is 30, determine the diameter of the wheel. ANSWER = m 2)Determine the effort required to ...
*May 20, 2013 by Danny*

**physics**

A typical ten-pound car wheel has a moment of inertia of about . The wheel rotates about the axle at a constant angular speed making 30.0 full revolutions in a time interval of 5.00 .
*December 6, 2009 by christina*

**physics**

A 715 gram grinding wheel 29.5 {\rm cm} in diameter is in the shape of a uniform solid disk. (We can ignore the small hole at the center.) When it is in use, it turns at a constant 210 {\rm rpm} about an axle perpendicular to its face through its center. When the power switch ...
*April 4, 2012 by Anonymous*

**College physics**

Consider the two situations. In the first a machine must pull a box up a rough slope at constant speed. The mass of the box is 800 kg, the coefficient of kinetic friction is 0.2, and the slope is inclined at 15 degrees to the horizontal. In the second situation the machine ...
*March 27, 2012 by Cody*

**12th grade**

A bicycle wheel has a radius of 0.330 m and a rim whose mass is 1.20 kg. The wheel has 50 spokes, each with a mass of 0.010 kg. a.) Calculate the moment of inertia of the rim about the axle. b.) Determine the moment of inertia of any one spoke, assuming it to be a long, thin ...
*March 10, 2010 by Janelle*

**Physics - Rotational Mechanics**

The combination of an applied force and a constant frictional force produces a constant total torque of 35.8 Nm on a wheel rotating about a fixed axis. The applied force acts for 5.95 s. During this time the angular speed of the wheel increases from 0 to 9.9 rad/s. The applied...
*March 4, 2007 by John*

**Physics**

A steel bicycle wheel (without the rubber tire) is rotating freely with an angular speed of 18.00 rad/s. The temperature of the wheel changes from -100.0 to +300.0 degrees Celcius. No net external torque acts on the wheel, and the mass of the spokes is negligible. (a) Does the...
*February 15, 2011 by Heather*

**Physics/Chemistry**

A steel bicycle wheel (without the rubber tire) is rotating freely with an angular speed of 18.00 rad/s. The temperature of the wheel changes from -100.0 to +300.0 degrees Celcius. No net external torque acts on the wheel, and the mass of the spokes is negligible. (a) Does ...
*February 15, 2011 by Heather*

**Physics (torque)**

The steering wheel of a certain vehicle has a diameter of 38.9 cm, and it turns a shaft that is 8.3 cm in diameter. If a 85.9 N force is needed to turn the steering wheel, what torque is exerted on the wheel?
*November 16, 2012 by Anonymous*

**Physics**

Simple Machines A simple wheel and axle has a wheel diameter of 2.3m and an axle diameter of 92mm. If an effort of 26N is required to raise a mass of 16 kg what is the efficiency of the machine? A- 2.46% B- 95.3% C- 24.1% D- 20.1% E- 65.5% I am having a problem determining ...
*May 11, 2013 by Danny*

**Math**

A river does 6,500 J of work on a water wheel every second. The wheel's efficiency is 12%. a. How much work in joules can the axle of the wheel do? b. What is the power output of the wheel in 1 s?
*November 3, 2012 by Leah*

**science**

A wheel with a radius of 20 cm is attached to an axle with a radius of 1cm. An effort force of 100 N on the wheel counters a resistance force of what on the axle?
*February 17, 2012 by Micheal*

**Physics**

A wheel with a radius of 20 cm is attached to an axle with a radius of 1cm. An effort force of 100 N on the wheel counters a resistance force of what on the axle?
*February 17, 2012 by Micheal*

**Science**

You are holding the axle of a bicycle wheel with radius 30 cm and mass 1.07 kg. You get the wheel spinning at a rate of 79 rpm and then stop it by pressing the tire against the pavement. You notice that it takes 1.11 s for the wheel to come to a complete stop. What is the ...
*November 26, 2012 by Gerrard*

**physics**

A 5.0 kg \rm kg, 52-cm \rm cm-diameter cylinder rotates on an axle passing through one edge. The axle is parallel to the floor. The cylinder is held with the center of mass at the same height as the axle, then released. a)What is the magnitude of the cylinder's initial angular...
*December 6, 2013 by Chloe *

**mechanics**

Find the total kinetic energy of a 1500 g wheel, 700 mm in diameter, rolling across a level surface at 650 rpm. Assume that the wheel can be considered as a hoop. (b) For the wheel in part (a), calculate the torque required to decrease its rotational speed from 400 rpm to rest...
*May 14, 2013 by george*

**physics**

A large wooden wheel of radius R and the moment of inertia I is mounted on an axle so as to rotate freely. A bullet of mass m and speed v is shot tangential to the wheel and strike its edge, lodging in the wheel’s rim. If the wheel was originally at rest, what is its rotation ...
*December 4, 2010 by Gee*

**physics**

A uniform disk with a mass of 27.3 kg and a radius of 0.309 m is free to rotate about a frictionless axle. Forces of 90.0 N and 125 N are applied to the disk, as the drawing indicates. (a) What is the net torque produced by the two forces? (b) What is the angular acceleration ...
*November 2, 2011 by Sami*

**Physic (concepts-please check my thoughts)**

A net torque applied to a rigid object always tends to produce? a)translational acceleration b) rotational equilibrium c) rotational acceleration d) rotational inertia e) none of these work (c) Torque produces torsion and tends to produce rotation. The net torque acting on a ...
*December 10, 2006 by Diane*

**physics help please**

A torque of 1.15 N·m is applied to a bicycle wheel of radius 36 cm and mass 0.83 kg. Treating the wheel as a hoop, find its angular acceleration. ?rad/s2 I know accel is alpha times the radius...where does torque tie in?
*October 22, 2008 by kelsey*

**Physics**

A 6 kg grinding wheel of radius 0.2 m rotates at a constant rotational frequency of 4 rad/s when an object makes contact with the outer edge of the wheel. Friction causes the wheel to stop in 2 seconds. What is the average torque on the wheel by the frictional force?
*February 5, 2013 by Physics*

**Science**

A 6 kg grinding wheel of radius 0.2 m rotates at a constant rotational frequency of 4 rad/s when an object makes contact with the outer edge of the wheel. Friction causes the wheel to stop in 2 seconds. What is the average torque on the wheel by the frictional force?
*February 5, 2013 by Physics*

**physics-frictional torque**

A string that passes over a pulley has a 0.321 kg mass attached to one end and a 0.655 kg mass attached to the other end. The pulley, which is a disk of radius 9.50 cm, has friction in its axle. What is the magnitude of the frictional torque that must be exerted by the axle if...
*November 27, 2010 by Cerra*

**physics**

The wheel of a car has a radius of 0.390 m. The engine of the car applies a torque of 466 N·m to this wheel, which does not slip against the road surface. Since the wheel does not slip, the road must be applying a force of static friction to the wheel that produces a ...
*December 9, 2011 by nagham*

**Physics**

The wheel of a car has a radius of 0.390 m. The engine of the car applies a torque of 282 N · m to this wheel, which does not slip against the road surface. Since the wheel does not slip, the road must be applying a force of static friction to the wheel that produces a ...
*November 15, 2012 by Elizabeth*

**physics**

for an object in equillibrium the net torque acting on it vanishes only if each torque is calculated about?
*May 25, 2012 by owen*

**physics**

The motor of a fan turns a small wheel of radius rm = 1.60 cm.This wheel turns a belt, which is attached to a wheel of radius rf = 2.90 cmthat is mounted to the axle of the fan blades. Measured from the center of this axle, the tip of the fan blades are at a distance rb = 11.0...
*October 21, 2011 by mymi*

**Physics**

an automobile tire has a radius of 0.350M, and its center forward with a liner speed of v=13.0m/s. (a) Determine the angular speed of the wheel. (Assume that there is no slipping of the surfaces in contact during the rolling motion.) (b) Relative to the axle, what is the ...
*March 14, 2007 by CJ*

**Physics- Simple machines**

A wheel and axle arrangement has an axle with a diameter of 25cm. A rope is wrapped around the axle and is supporting a load of 2 tonnes. 1) If the mechanical advantage of the system is 30, determine the diameter of the wheel___________m. 2)Determine the effort required to ...
*May 12, 2013 by Danny*

**Physics**

There is a bicycle wheel resting against a small step whose height is h = 0.132 m. The weight and radius of the wheel are W = 27.3 N and r = 0.324 m, respectively. A horizontal force is applied to the axle of the wheel. As the magnitude of increases, there comes a time when ...
*November 16, 2012 by 4319*

**physics**

A wheel of diameter 28.0 cm is constrained to rotate in the xy plane, about the z axis, which passes through its center. A force = (-38.0 + 39.0 ) N acts at a point on the edge of the wheel that lies exactly on the x axis at a particular instant. What is the torque about the ...
*January 2, 2012 by Joe*

**physics**

When a 19.9 kg wheel with an angular speed of 3.10 rad/s is disconnected from a motor, a 0.124 N · m frictional torque slows the wheel to a stop. If the wheel has radius of 0.71 m, how long will it take for the wheel to come to rest after being disconnected from the motor?
*November 18, 2011 by Alex*

**physics**

The figure shows a bicycle wheel resting against a small step whose height is h = 0.110 m. The weight and radius of the wheel are W = 26.0 N and r = 0.370 m. A horizontal force is applied to the axle of the wheel. As the magnitude of increases, there comes a time when the ...
*March 26, 2011 by Alicia*

**Physics**

A cord is wrapped around the rim of a wheel .250 m in radius, and a steady pull of 40.0 N is exerted on the cord. The wheel is mounted on frictionless bearings on a horizontal shaft through its center. The moment of inertia of the wheel about this shaft is 5.00kg*m^2. Compute ...
*March 27, 2007 by Karla*

**physics**

A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 210 N applied to its edge causes the wheel to have an angular acceleration of 1.161 rad/s2. (b) What is the mass of the ...
*November 9, 2011 by jim*

**math (vectors) & physics**

In unit-vector notation, what is the net torque about the origin on a flea located at coordinates (-2.0, 4.0 m, -1.0 m) when forces F1 = (-4.0 N) k and F2 = (-5.0 N) j act on the flea? _____________________________________ Torque is the cross product of the radius vector and ...
*March 28, 2007 by sam*

**science**

a river does 6500J of work on a water wheel every second.The wheels efficiency is 12 percent.A)How much work in joules can the axle of the wheel do in a second? B)What is the power output of the wheel?
*March 3, 2013 by kayla*

**Physics**

A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 300 N applied to its edge causes the wheel to have an angular acceleration of 1.072 rad/s2. (a) What is the moment of ...
*December 5, 2012 by anonymous*

**Physics**

The combination of an applied force and a frictional force produces a constant total torque of 38.1 Nm on a wheel rotating about a fixed axis. The applied force acts for 7.00 s, during which time, the angular speed of the wheel increases from 2.40 rad/s to 12.5 rad/s. The ...
*April 26, 2010 by Tessa*

**physics**

A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 210 N applied to its edge causes the wheel to have an angular acceleration of 1.161 rad/s2. (a) What is the moment of ...
*November 9, 2011 by Anonymous*

**physics**

A large grinding wheel in the shape of a solid cylinder of radius 0.370m is free to rotate on a frictionless, vertical axle. A constant tangential force of 470 N applied to its edge causes the wheel to have an angular acceleration of 0.800 rad/s2. (a) What is the moment of ...
*November 11, 2012 by Anonymous*

**Physics**

A rotating uniform-density disk of radius 0.6 m is mounted in the vertical plane. The axle is held up by supports that are not shown, and the disk is free to rotate on the nearly frictionless axle. The disk has mass 5.8 kg. A lump of clay with mass 0.5 kg falls and sticks to ...
*April 14, 2013 by Emily*

**Physics- Elena please help!**

A large grinding wheel in the shape of a solid cylinder of radius 0.450m is free to rotate on a frictionless, vertical axle. A constant tangential force of 180 N applied to its edge causes the wheel to have an angular acceleration of 0.870 rad/s2. (a) What is the moment of ...
*November 6, 2012 by Anonymous*

**physic**

A grinding wheel of radius 0.280 m rotating on a frictionless axle is brought to rest by applying a constant friction force tangential to its rim. The constant torque produced by this force is 75.3 N · m. Find the magnitude of the friction force.
*July 29, 2012 by Anonymous*

**physics**

A grinding wheel of radius 0.370 m rotating on a frictionless axle is brought to rest by applying a constant friction force tangential to its rim. The constant torque produced by this force is 79.2 N • m. Find the magnitude of the friction force.
*December 9, 2012 by Anonymous*

**Physics 141**

A bicycle wheel resting against a small step whose height is h = 0.125 m. The weight and radius of the wheel are W = 23.1 N and r = 0.330 m, respectively. A horizontal force vector F is applied to the axle of the wheel. As the magnitude of vector F increases, there comes a ...
*April 5, 2014 by dakota22*

**physics**

A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 260 N applied to its edge causes the wheel to have an angular acceleration of 0.795 rad/s2. (a) What is the moment of ...
*November 15, 2012 by Shane*

**physics**

A large grinding wheel in the shape of a solid cylinder of radius 0.330 m is free to rotate on a frictionless, vertical axle. A constant tangential force of 250 N applied to its edge causes the wheel to have an angular acceleration of 1.053 rad/s2. (a) What is the moment of ...
*November 30, 2012 by heather*

**Physics 141**

The drawing shows a bicycle wheel resting against a small step whose height is h = 0.125 m. The weight and radius of the wheel are W = 23.1 N and r = 0.330 m, respectively. A horizontal force vector F is applied to the axle of the wheel. As the magnitude of vector F increases...
*April 3, 2014 by dakota22*

**Physics 141**

The drawing shows a bicycle wheel resting against a small step whose height is h = 0.125 m. The weight and radius of the wheel are W = 23.1 N and r = 0.330 m, respectively. A horizontal force vector F is applied to the axle of the wheel. As the magnitude of vector F increases...
*April 5, 2014 by dakota22*

**physics 2...help please**

A wheel on a game show is given an initial angular speed of 1.33 rad/s. It comes to rest after rotating through 3/4 of a turn. (a) Find the average torque exerted on the wheel given that it is a disk of radius 0.76 m and mass 6.4 kg. ? N·m sorry, I'm having converting issues...
*October 22, 2008 by kelsey*

**physics class-Help!!!**

A 3.0 m rod is pivoted about its left end.A force of 6.0 N is applied perpendicular to the rod at a distance of 1.2 m from the pivot causing a ccw torque, and a force of 5.2 is applied at the end of the rod 3.0 m from the pivot. The 5.2 N is at an angle of 30 degrees to the ...
*July 16, 2008 by Steph*

**PHYSICS**

A 3.0m rod is pivoted about its left end. A force of 6.0N is applied perpendicularto the rod at a distance of 1.2m from the pivot causing a ccw torque, and a force of 5.2N is applied at the end of the rod 3.0m fromt eh pivot. The 5.2N is at an angle if 30 degrees to the rod ...
*November 10, 2007 by magic 8 ball*

**Physics**

A rotating uniform-density disk of radius 0.7 m is mounted in the vertical plane. The axle is held up by supports that are not shown, and the disk is free to rotate on the nearly frictionless axle. The disk has mass 5 kg. A lump of clay with mass 0.3 kg falls and sticks to the...
*November 8, 2012 by Udit*

**physics**

An automobile tire has a radius of 0.335 m, and its center moves forward with a linear speed of v = 24.1 m/s. (a) Determine the angular speed of the wheel. (b) Relative to the axle, what is the tangential speed of a point located 0.243 m from the axle?
*July 16, 2013 by katie*

**physics**

A small rubber wheel is used to drive a large pottery wheel, and they are mounted so that their circular edges touch. The small wheel has a radius of 1.7 cm and accelerates at the rate of 6.9 rad/s^2, and it is in contact with the pottery wheel (radius 27.0 cm) without ...
*October 19, 2010 by Lacey*

**Physics**

A 3.0-m rod is pivoted about its left end. A force of 6.0 N is applied perpendicular to the rod at a distance of 1.2m from the pivot causing a CCW torque, and a force of 5.2N is applied at the end of the rod 3.0m from the pivot. the 5.2N is at an angle of 30 degrees to the rod...
*June 8, 2010 by Katie*

**Physics**

Two wheels have the same mass and radius of 4.0 kg and 0.35 m, respectively. One has (a) the shape of a hoop and the other (b) the shape of a solid disk. The wheels start from rest and have a constant angular acceleration with respect to a rotational axis that is perpendicular...
*November 4, 2011 by Jasmin*

**physics**

If a 31.0 N·m torque on a wheel causes angular acceleration 22.0 rad/s2, what is the wheel's rotational inertia?
*April 7, 2010 by Jordan*

**Physics**

a 14.0 N·m torque on a wheel causes angular acceleration 11.3 rad/s2, what is the wheel's rotational inertia?
*November 6, 2012 by Torin*

**physics**

A wheel rotates without friction about a stationary horizontal axis at the center of the wheel. A constant tangential force equal to 83.N is applied to the rim of the wheel. The wheel has radius 0.110m . Starting from rest, the wheel has an angular speed of 14.6rev/s after 3....
*May 3, 2013 by amy*

**physics**

A torque of 0.97 N-m is applied to a bicycle wheel of radius 0.35 m and mass 0.75 kg. Treating the wheel as a hoop, find its angular acceleration.
*November 25, 2011 by pakilina*

**physics**

A long thin rod is cut into two pieces, one being as long as the other. To the midpoint of piece A, piece B is attached perpendicularly, in order to form the inverted "T" shown in the figure. The application of a net external torque causes this object to rotate about axis 1 ...
*October 27, 2012 by jordan*

**Science**

A torque of 60 N*m acts on a wheel of moment of inertia 30 kg*m^2 for 5 s and then is removed. a) What is the angular acceleration of the wheel? b) How many revolutions does it make in 15 s if it starts at rest?
*November 30, 2011 by John*

**physics**

A small rubber wheel is used to drive a large pottery wheel, and they are mounted so that their circular edges touch. The small wheel has a radius of 1.7 cm and accelerates at the rate of 6.9 rad/s^2, and it is in contact with the pottery wheel (radius 27.0 cm) without ...
*October 18, 2010 by rob*

**Physics**

A 1550 kg automobile has a wheel base (the distance between the axles) of 3.00 m. The center of mass of the automobile is on the center line at a point 1.10 m behind the front axle. Find the force exerted by the ground on each wheel. force on each rear wheel ___ kN (upward) ...
*March 1, 2011 by Skye*

**physics**

Three forces are applied to a box wrench. find the total torque about the bolt in newton-meters caused by these forces. Is the torque a positive torque or a negative torque?
*May 24, 2012 by Jen*

**Physics**

A torque of 60 N*m acts on a wheel of moment of inertia 30 kg*m^2 for 5 s and then is removed. a) What is the angular acceleration of the wheel? rad/s^2 b) How many revolutions does it make in 15 s if it starts at rest?
*November 28, 2011 by John*

**math (vectors) & physics**

Posted by sam on Wednesday, March 28, 2007 at 7:32pm. In unit-vector notation, what is the net torque about the origin on a flea located at coordinates (-2.0, 4.0 m, -1.0 m) when forces F1 = (-4.0 N) k and F2 = (-5.0 N) j act on the flea? _____________________________________ ...
*March 29, 2007 by sam*

**Physics**

A wheel of moment of inertia 0.136 kg · m2 is spinning with an angular speed of 5000 rad/s. A torque is applied about an axis perpendicular to the spin axis. If the applied torque has a magnitude of 67.8 N · m, the angular velocity of precession will be? Please help me solve ...
*March 28, 2014 by kjean*

**physics**

A constant torque of 20 N.m is applied to a wheel pivoted on a fixed axis. At what rate is power being furnished to the wheel when it is rotating at 0.5 rev/sec?
*December 4, 2010 by Maa*

**Physics**

A 4.0 kg wheel of 20 cm radius of gyration is rotating at 360 rpm. The retarding frictional torque is .12 N.m. Compute the time it will take the wheel to coast to a rest.
*November 27, 2012 by Trevor*

**Physics**

A 4.0 kg wheel of 20 cm radius of gyration is rotating at 360 rpm. The retarding frictional torque is .12 N.m. Compute the time it will take the wheel to coast to a rest.
*November 27, 2012 by Trevor*

**Physics**

A long, thin rod is cut into two pieces, one being twice as long as the other. To the midpoint of piece A (the longer piece), piece B is attached perpendicularly, in order to form the inverted “T” shown in the drawing. The application of a net external torque causes this ...
*November 3, 2012 by StressedStudent*

**Physics**

In a Cavendish balance apparatus suppose that M1= 1.10Kg, M2= 25.0Kg, and the rod connecting the M1 pairs is 30.0cm long. If, in each pair, M1 and M2 are 12.0cm apart center-to-center, find (a) the net force and (b) the net torque (about the rotation axis) on the rotating part...
*January 19, 2009 by Jaime*

**physics**

A bicycle wheel is mounted on a fixed, frictionless axle. A massless string is wound around the wheel's rim, and a constant horizontal force, F, starts pulling the string from the top of the wheel starting at time t = 0 when the wheel is not rotating. Suppose that at some ...
*January 22, 2010 by Gabe*

**physics**

THe steering wheel of a car has a diameter of 60cm and turns a shaft 4cm in diameter (a) If a 90nt force is needed to turn the wheel, what torque is exerted on the wheel? (b) What force is applied tangentially to the surface of the shaft?
*January 19, 2011 by bird*

**science**

In some cases the input force turns the wheel, and the axle exerts the output force, resulting in a mechanical advantage ------------------ than one; exanples are a doorknob a steering wheel, and a screwdriver. Please anwser this question Thanks
*January 28, 2011 by Melea*

**physics**

A person is riding on a Ferris wheel of radius R. He starts at the lowest point of the wheel. When the wheel makes one complete revolution, is the net work done by the gravitational force positive, zero, or negative? Do you need to know how the speed of the person changed ...
*February 13, 2012 by Amy*

Pages: **1** | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Next>>