Sunday

April 19, 2015

April 19, 2015

Number of results: 61,032

**math**

A ship sails due north from a position 5 degrees, 28' South Latitude to position 6 degrees, 43' North Latitude. Given that one minute of latitude is equivalent to 1 nautical mile, the ship has sailed a distance of A. 75 nautical miles B. 371 nautical miles C. 731 nautical ...
*August 14, 2014 by Demi*

**physics **

The depth of the ocean is sometimes measured in fathoms (1 fathom = 6 feet). Distance on the surface of the ocean is sometimes measured in nautical miles (1 nautical mile = 6076 feet). The water beneath a surface rectangle 3.70 nautical miles by 2.80 nautical miles has a depth...
*September 13, 2014 by S*

**physics **

The depth of the ocean is sometimes measured in fathoms (1 fathom = 6 feet). Distance on the surface of the ocean is sometimes measured in nautical miles (1 nautical mile = 6076 feet). The water beneath a surface rectangle 3.70 nautical miles by 2.80 nautical miles has a depth...
*September 13, 2014 by S*

**physics**

The depth of the ocean is sometimes measured in fathoms (1 fathom = 6 feet). Distance on the surface of the ocean is sometimes measured in nautical miles (1 nautical mile = 6076 feet). The water beneath a surface rectangle 3.70 nautical miles by 2.80 nautical miles has a depth...
*September 13, 2014 by S*

**Calc**

Two commercial airplanes are flying at an altitude of 40,000 ft along straight-line courses that intersect at right angles. Plane A is approaching the intersection point at a speed of 427 knots (nautical miles per hour; a nautical mile is 2000 yd or 6000 ft.) Plane B is ...
*October 1, 2013 by Anonymous*

**Calc**

Two commercial airplanes are flying at an altitude of 40,000 ft along straight-line courses that intersect at right angles. Plane A is approaching the intersection point at a speed of 427 knots (nautical miles per hour; a nautical mile is 2000 yd or 6000 ft.) Plane B is ...
*October 1, 2013 by Anonymous*

**calculus**

Two commercial airplanes are flying at an altitude of 40,000 ft along straight-line courses that intersect at right angles. Plane A is approaching the intersection point at a speed of 429 knots (nautical miles per hour; a nautical mile is 2000 yd or 6000 ft.) Plane B is ...
*September 27, 2012 by Avi*

**math**

The distance between two points is correctly expressed as 720 statute miles or 630 nautical miles. Which of the following most closely approximates the value of one statute mile in terms of nautical miles? a. 0.88 b. 0.89 c. 0.90 d. 1.14 e. 1.25 please answer and explain what ...
*May 4, 2014 by thomas *

**maths**

A ship sails on a steady course bearing 106 degrees from A to B.If B is 76 nautical miles further east than A,find,to the nearest nautical mile,how far the ship has sailed?
*March 8, 2013 by Shane*

**Pre-Algebra**

One hundred nautical miles equals about 185 kilometers. To the nearest kilometer, how far in kilometers is 290 nautical miles?
*December 13, 2012 by Anonymous*

**Trigonometry**

Navigation A ship leaves port at noon and has a bearing of S 29° W. If the ship sails at 20 knots, how many nautical miles south and how many nautical miles west will the ship have traveled by 6:00 P.M.?
*February 4, 2013 by AwesomeGuy*

**maths**

A lighthouse is 9.6 nautical miles from a ship which bears 156 degrees from the lighthouse.How far is the ship east of the lighthouse?Give answer correct to one-tenth of a nautical mile.
*March 3, 2013 by Shane*

**Precalculus**

A nautical mile equals the length of arc subtended by a central angle of 1 minute on a great circle on the surface of Earth. If the radius of Earth is taken as 3960 miles, express 1 nautical mile in terms of ordinary, or statute, miles.
*January 12, 2012 by Jillian*

**math**

The position of two towns X and Y are given to the nearest degree as X(45° N, 10° W) and Y (45 N°, 70° W). Find (a) The distance between the two towns in (i) Kilometers ( take the radius of the earth as 63711) (ii) Nautical miles ( take I nautical mile to be 1.85 km) (b) The ...
*February 9, 2015 by kudu*

**calculus**

(1 pt) At noon, ship A is 50 nautical miles due west of ship B. Ship A is sailing west at 15 knots and ship B is sailing north at 21 knots. How fast (in knots) is the distance between the ships changing at 4 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*March 10, 2009 by bill nye*

**Math!**

At noon, ship A is 50 nautical miles due west of ship B. Ship A is sailing west at 25 knots and ship B is sailing north at 16 knots. How fast (in knots) is the distance between the ships changing at 6 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*June 4, 2009 by <3*

**calculus**

At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 17 knots and ship B is sailing north at 20 knots. How fast (in knots) is the distance between the ships changing at 4 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*September 24, 2009 by Parker*

**calculus**

At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 17 knots and ship B is sailing north at 20 knots. How fast (in knots) is the distance between the ships changing at 4 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*September 24, 2009 by Parker*

**Maths**

At noon, ship A is 30 nautical miles due west of ship B. Ship A is sailing west at 16 knots and ship B is sailing north at 22 knots. How fast (in knots) is the distance between the ships changing at 7 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*October 15, 2009 by Salman*

**Math**

At noon, ship A is 30 nautical miles due west of ship B. Ship A is sailing west at 16 knots and ship B is sailing north at 22 knots. How fast (in knots) is the distance between the ships changing at 7 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*October 16, 2009 by Salman*

**calculus**

At noon, ship A is 30 nautical miles due west of ship B. Ship A is sailing west at 25 knots and ship B is sailing north at 16 knots. How fast (in knots) is the distance between the ships changing at 7 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*October 20, 2009 by Georgia*

**math**

At noon, ship A is 40 nautical miles due west of ship B. Ship A is sailing west at 18 knots and ship B is sailing north at 23 knots. How fast (in knots) is the distance between the ships changing at 4 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*November 7, 2009 by adrienne*

**Calculus**

At noon, ship A is 20 nautical miles due west of ship B. Ship A is sailing west at 23 knots and ship B is sailing north at 17 knots. How fast (in knots) is the distance between the ships changing at 5 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*March 1, 2010 by Samuel*

**calculus 1**

At noon, ship A is 50 nautical miles due west of ship B. Ship A is sailing west at 16 knots and ship B is sailing north at 17 knots. How fast (in knots) is the distance between the ships changing at 5 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*March 25, 2010 by Anonymous*

**calculus 1**

At noon, ship A is 30 nautical miles due west of ship B. Ship A is sailing west at 18 knots and ship B is sailing north at 19 knots. How fast (in knots) is the distance between the ships changing at 3 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*March 25, 2010 by mona*

**calculus 1**

At noon, ship A is 20 nautical miles due west of ship B. Ship A is sailing west at 21 knots and ship B is sailing north at 18 knots. How fast (in knots) is the distance between the ships changing at 5 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*March 25, 2010 by mona*

**math**

At noon, ship A is 40 nautical miles due west of ship B. Ship A is sailing west at 16 knots and ship B is sailing north at 17 knots. How fast (in knots) is the distance between the ships changing at 5 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*March 26, 2010 by bob dylan*

**Calculus**

At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 19 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 4 PM? (Note: 1 knot is a speed of 1 nautical mile per hour
*April 3, 2010 by Anonymous*

**Calculus**

At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 18 knots and ship B is sailing north at 22 knots. How fast (in knots) is the distance between the ships changing at 6 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*October 26, 2010 by Sam*

**Calc**

At noon, ship A is 30 nautical miles due west of ship B. Ship A is sailing west at 16 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 7 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*October 28, 2010 by Pierre*

**Calculus**

At noon, ship A is 20 nautical miles due west of ship B. Ship A is sailing west at 22 knots and ship B is sailing north at 18 knots. How fast (in knots) is the distance between the ships changing at 4 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*October 31, 2010 by Anonymous*

**Cal 1**

(1 pt) At noon, ship A is 50 nautical miles due west of ship B. Ship A is sailing west at 20 knots and ship B is sailing north at 23 knots. How fast (in knots) is the distance between the ships changing at 5 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*November 3, 2010 by TJ*

**CAL**

At noon, ship A is 30 nautical miles due west of ship B. Ship A is sailing west at 21 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 4 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*July 10, 2011 by LAURA*

**CALCULUS**

At noon, ship A is 40 nautical miles due west of ship B. Ship A is sailing west at 23 knots and ship B is sailing north at 19 knots. How fast (in knots) is the distance between the ships changing at 5 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*October 24, 2011 by CRYSTAL*

**Calc**

At noon, ship A is 50 nautical miles due west of ship B. Ship A is sailing west at 15 knots and ship B is sailing north at 18 knots. How fast (in knots) is the distance between the ships changing at 6 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*February 19, 2012 by Heather*

**calculus**

At noon, ship A is 30 nautical miles due west of ship B. Ship A is sailing west at 25 knots and ship B is sailing north at 25 knots. How fast (in knots) is the distance between the ships changing at 6 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*May 14, 2012 by remy*

**calculus**

At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 15 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 3 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*November 4, 2012 by Anonymous*

**calculus**

At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 15 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 3 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*November 4, 2012 by Anonymous*

**calculus**

At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 15 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 3 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*November 4, 2012 by Anonymous*

**Calculus**

At noon, ship A is 50 nautical miles due west of ship B. Ship A is sailing west at 19 knots and ship B is sailing north at 24 knots. How fast (in knots) is the distance between the ships changing at 3 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*October 27, 2014 by Alessandra*

**calc**

At noon, ship A is 30 nautical miles due west of ship B. Ship A is sailing west at 17 knots and ship B is sailing north at 16 knots. How fast (in knots) is the distance between the ships changing at 6 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*October 29, 2014 by john smit*

**PLEASE HELP Math**

At noon, ship A is 40 nautical miles due west of ship B. Ship A is sailing west at 24 knots and ship B is sailing north at 22 knots. How fast (in knots) is the distance between the ships changing at 6 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*March 15, 2009 by Randall*

**Calculus **

At noon, ship A is 30 nautical miles due west of ship B. Ship A is sailing west at 23 knots and ship B is sailing north at 17 knots. How fast (in knots) is the distance between the ships changing at 4 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.) Please help!
*July 28, 2013 by Anonymous*

**Calculus Please help!**

At noon, ship A is 50 nautical miles due west of ship B. Ship A is sailing west at 18 knots and ship B is sailing north at 23 knots. How fast (in knots) is the distance between the ships changing at 3 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*February 28, 2014 by ALI*

**math**

At noon, ship A is 30 nautical miles due west of ship B. Ship A is sailing west at 21 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 4 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.) this is a cal ...
*July 9, 2011 by lisa*

**math**

At noon, ship A is 30 nautical miles due west of ship B. Ship A is sailing west at 21 knots and ship B is sailing north at 15 knots. How fast (in knots) is the distance between the ships changing at 4 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.) this is a cal ...
*July 9, 2011 by lisa*

**algebra**

Two ships make the same voyage of 3000 nautical miles. The faster ship travels 10 knots faster than the slower one (a knot is 1 nautical mile per hour). The faster ship makes the voyage in 50 hr less time than the slower one. Find the speeds of the two ships.
*February 21, 2012 by Krystal*

**Physics/Nautical Mile**

My previous posts have dramatically improved my understanding of how a NM is derived but other questions have been raised: In most books entitled "Pass your Day Skipper" or "Yachtmaster" or similar nautical/navigational publications Latitude is described and illustrated as the...
*October 6, 2007 by Mike*

**Physics/English/Nautical Mile**

In my previous posts about the NM I think part of my problem is I do not understand the meaning of the word "SUBTENDED". Explanation please. Mike
*October 5, 2007 by Mike*

**Physics**

The Nautical Mile is internationally recognised as 1852m which is an approximation of 1' of latitude subtended to the earths surface. However it is an average and the geographical length on the earths surface of 1' of lat subtended will vary according to the radius of the ...
*October 5, 2007 by Mike*

**Maths/Law of sines**

I have a spherical triangle and I know 1 angle 31.3 degrees and all 3 sides which are 1624, 2118.4 and 1078.85 nautical miles. In order to find the other 2 angles I know I must use the law of sines: sin A over a = sin B over b = sin C over c If angle A is 31.3 degrees and side...
*January 13, 2008 by Mike*

**Math**

t noon, ship A is 30 nautical miles due west of ship B. Ship A is sailing west at 16 knots and ship B is sailing north at 22 knots. How fast (in knots) is the distance between the ships changing at 7 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.) Note: Draw ...
*October 15, 2009 by Salman*

**Calculus**

At noon, ship A is 50 nautical miles due west of ship B. Ship A is sailing west at 20 knots and ship B is sailing north at 16 knots. How fast (in knots) is the distance between the ships changing at 6 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.) Note: Draw ...
*November 22, 2009 by Bobby*

**8th Grade Math (Algebra1)**

I actually have a few different problems that are giving me trouble. The first: We have to use the motion problem formula: d=rt and make a table containing the elements: rate: * time: = distance ------------------------------ label #1 label #2 The Directions for this problem's...
*February 3, 2009 by Nicole C.*

**Nautical Studies/Tides**

New moons & Full moons are responsible for Spring Tides. Moon's & Sun's gravity in line. 1st quarter & last quarter are responsible for Neap Tides. Moon's gravity 90 degrees to Sun's gravity. This is generally accepted & understood. However if you look in a tide table or ...
*October 10, 2007 by Mike*

**Calc**

If t is measured in hours and f '(t) is measured in knots, then integral from 0 to 2 of f '(t)dt = ? (Note: 1 knot = 1 nautical mile/hour)
*January 2, 2011 by Erica*

**calculus**

A ship is running at 14 3/4 knots (nautical miles per hour) for 7 1/2 hours. How far does the ship travel?
*January 24, 2010 by Jammie*

**calculus**

A ship is running at 14 3/4 knots (nautical miles per hour) for 7 1/2 hours. How far does the ship travel?
*January 24, 2010 by Jammie*

**Nautical**

With a steady wind blowing at 15Kn blowing over the sea is it possible to determine the speed the waves are travelling? Thanks Mike
*November 23, 2007 by Mike*

**Spherical Trigonometery**

I am trying to apply the formula cos c = cos a x cos b + sin a x sin b x cos C to find the length of c in my spherical triangle. I am working with 2 examples in a book in which the answers are given. In the first example all the sines & cosines calculated are positive and I ...
*January 15, 2008 by Mike*

**chemistry**

By international agreement, the nautical mile is now defined as exactly 1852 meters. By what percentage does this current definition differ from the original definition?
*January 7, 2011 by Anonymous*

**Algebtra**

from 630 feet at the top of the horizon. Due to the curvature of the earth how far away is the city. using d=sqrt[3h/2] where d is the distance in nautical miles and h is the height in feet.
*September 11, 2011 by Dianne*

**Math story problem**

The Airbus A380-800, the largest in the Airbus fleet has a range of 8,200 nautical miles. Please write this number in scientific notation.
*October 6, 2011 by Katie A*

**Physics/Nautical Mile**

Still studying! I have The Macmillan & Silk Cut Nautical Almanac from 1981 which pre-dates WGS84 and they make reference to the NM being 6046 feet at the equator and 6108 feet at the poles. Conversions to metres = 1842.82m and 1861.71m. Remarkably similar to WGS84 derived ...
*October 7, 2007 by Mike*

**Nautical/Maths**

Please can someone solve this PZX triangle for me and give your workings. Angle ZPX 040 degrees Distance PZ 3000M (NM) Distance PX 2000M (NM) Thanks a million. Mike
*January 4, 2008 by Mike*

**Nautical Studies**

I am trying to find an up to date position for the Magnetic North Pole. All searches I have made state positions that are several years out of date. Can anyone help Thanks Mike
*October 28, 2007 by Mike*

**Nautical studies**

Please advise formula for calculating rising/dipping ranges if tables are not available or the height of light is beyond the scope of the tables. ie Ht of light 155m/ ht of eye 3m Thanks Mike
*November 8, 2007 by Mike*

**math**

A ship leaves an island (5°N, 45° E) and sails due east for 120 hours to another island. Average speed of the ship is 27 knots. Calculate the distance between the two islands In nautical miles In kilometers
*February 28, 2015 by kudu*

**Calculus - Optimization **

The cost of fuel for a boat is one half the cube of the speed on knots plus 216/hour. Find the most economical speed for the boat if it goes on a 500 nautical mile trip.
*March 20, 2013 by Sam*

**Physics/Nautical Mile**

The NM by definition is something used at sea. In my previous post I established there is a difference in the length of the earths radius at the equator compared to the poles, although it is not clear whether the radius is a measurement of land mass or sea level? Additionally ...
*October 5, 2007 by Mike*

**maths**

Two patrol boats M3 and M7 leave port at the same time.M3 heads due west and M7 on a bearing 227 degrees.After 30 minutes M7 has travelled 18 nautical miles and observes M3 in a direction due south.(a)How far is M3 from M7? (b) How far has M3 travelled?
*March 8, 2013 by Shane*

**Trigonometry**

A freighter, streaming on course 140„a at 20 knots, is 40 nautical miles N20„aE of a submarine with a cruising speed of 25 knots. Find the course to be set by the sub to overtake the freighter in the least amount of time, and find this minimum time.
*January 15, 2012 by Anonymous*

**math**

Airport Surveillance Radar (ASR) tracks planes in circular region around an airport. What is the circumference covered by the radar if the diameter of the circular region is 120 nautical miles? Round your answer to the nearest unit. (C=Pi x d) Pi= 3.14
*September 1, 2012 by Anonymous*

**math**

A plane flying at 200 knots left an airport A( 30° S, 31°E) and flew due North to an airport B( 30° N 31° E) (a) Calculate the distance covered by the plane, in nautical miles (b) After a 15 minutes stop over B, the plane flew west to an airport C(30°N 13°E) at the same speed.
*March 16, 2015 by kudu*

**Precalculus**

Find the distance along an arc on the surface of the earth that subtends a central angle of 1 minute. (1 minute = 1/60 degree) This is a nautical mile. Note that the radius of the Earth is 3960 miles and there are 1760 yards in a mile. Express your answer in both miles and yards.
*September 10, 2012 by Greg*

**Calculus**

At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 16 knots and ship B is sailing north at 24 knots. How fast (in knots) is the distance between the ships changing at 3 PM? This is what I got but it's not right 28.727
*September 25, 2009 by Z32*

**Calc**

At noon, ship A is 40 nautical miles due west of ship B. Ship A is sailing west at 19 knots and ship B is sailing north at 20 knots. How fast (in knots) is the distance between the ships changing at 7 PM? i really dont have any idea what to do...
*February 20, 2012 by UCI Student*

**Nautical Studies**

I am just beginning to study celestial navigation and initially wish to concentrate my limited powers on the intercept method. I understand this involves the creation of a spherical triangle PZX which must be solved. I also understand there are several ways of solving this ...
*January 10, 2008 by Mike*

**math**

At noon, ship A is 20 nautical miles due west of ship B. Ship A is sailing west at 24 knots and ship B is sailing north at 25 knots. How fast (in knots) is the distance between the ships changing at 5 PM? I have tried multiple times but keep getting confused.
*October 5, 2014 by Sara*

**math**

. A ship leaves an island (5°N, 45° E) and sails due east for 120 hours to another island. Average speed of the ship is 27 knots. (a) Calculate the distance between the two islands (i) In nautical miles (ii) In kilometers (b) Calculate the speed of the ship in kilometers per ...
*March 12, 2015 by kudu*

**calculus**

At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 18 knots and ship B is sailing north at 22 knots. How fast (in knots) is the distance between the ships changing at 4 PM?
*October 26, 2009 by Anonymous*

**calculus**

At noon, ship A is 30 nautical miles due west of ship B. Ship A is sailing west at 17 knots and ship B is sailing north at 23 knots. How fast (in knots) is the distance between the ships changing at 3 PM?
*October 29, 2009 by Ash*

**Calc**

At noon, ship A is 50 nautical miles due west of ship B. Ship A is sailing west at 20 knots and ship B is sailing north at 20 knots. How fast (in knots) is the distance between the ships changing at 4 PM?
*October 28, 2010 by Pierre*

**math**

At noon, ship A is 50 nautical miles due west of ship B. Ship A is sailing west at 16 knots and ship B is sailing north at 21 knots. How fast (in knots) is the distance between the ships changing at 3 PM
*November 5, 2010 by Rick*

**Calculus **

At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 16 knots and ship B is sailing north at 24 knots. How fast (in knots) is the distance between the ships changing at 3 PM?
*March 27, 2012 by Reanna *

**Calculus**

At noon, ship A is 10 nautical miles due west of ship B. Ship A is sailing west at 24 knots and ship B is sailing north at 19 knots. How fast (in knots) is the distance between the ships changing at 6 PM?
*May 24, 2013 by Sam*

**calculus**

At noon, ship A is 20 nautical miles due west of ships B. Ship A is sailing west at 18 knots and ship B is sailing north at 20 knots. How fast (in knots) is the distance between the ships changing at 6 PM?
*October 26, 2010 by Alexander M.*

**Nautical Studies**

IRPCS - Vessel over 100m aground in fog - sound signals. IRPCS does not make it clear, it seems open to interpretation. 3 strokes of bell/bell 5s/gong 5s/3 strokes of bell OR 3 strokes of bell/bell 5s/3 strokes of bell/gong 5s ?????????? Thank you Mike
*October 9, 2007 by Mike*

**Nautical Studies**

I am aware a magnetic compass is useless for navigational purposes in the region of the magnetic north pole. How far away from the magnetic north pole do you need to be before the magnetic compass will function effectively? Depending on the answer does this mean a magnetic ...
*October 28, 2007 by Mike*

**Nautical Studies/WGS84**

Boston to Lisbon in Spain. Great Circle Track 3170M Rhumb Line Track 3237M Referenced from "The Oxford Companion to Ships & the Sea". Please advise if I was departing Boston for Lisbon using GPS WGS84 would the GPS give a distance of 3170M or 3237M? Thanks Mike
*October 17, 2007 by Mike*

**Navigation**

Solution to yesterdays problem I think! I am just beginning to study navigation & on top of that do not have a clue about how things should be expressed mathematically and on top of that have difficulty typing formulas on the computer - they are obviously not designed to do ...
*January 16, 2008 by mike*

**general chemistry**

one international mile is defined as exactly 607601155 ft, and a speed of 1 knot is defined as one international nautical mile per hour.What is the speed in meters per second of a boat traveling at a speed of 14.3 knot?
*January 21, 2008 by marinka*

**Math Analysis**

From a ship off-shore, the angle of elevation of a hill is 1.1°. After the ship moves inland at 4.5 knots for 20 min, the angle of elevation is 1.4°. How high is the hill? (1 knot = 1 nautical mile = 6080 ft per hour) As I was just about to get the answer, I realized that it ...
*March 2, 2010 by Emily*

**Nautical/Stability/GM**

I have previously understood a ship's GM determined her role period. However I have just read that if weight on the centreline of the ship is moved laterally outwards to the sides of the ship this will slow the ships roll ie. increase its roll period. I understand the GM of ...
*December 17, 2007 by Mike*

**math**

if I am traveling by plane from Marshfield to Minnepolis (150 Statue miles) which equals 172.5 nautical miles. Our true course is set at 207 degrees. Theresa os a wind blowing from 90 degrees at 10 knots. Normally the plane travels at 100 knots per hour, but the wind will ...
*October 31, 2009 by Theresa*

**urgent!!!words questions dued tomorrow**

Each phase is an anagram of a country and it's capital city. 1.CHEESE GARNET 2.OSSARIUM COWS 3.RARE NAUTICAL ARABS 4.SAVE UNITARIAN 5.ROYAL ITEM If don't know all still tell me what you know.HURRYHURRYHURRY... The first and last are in southern Europe, bordering the ...
*August 3, 2005 by Sandy*

**Math**

A ship in calm seas steamed 13 km in one direction, turned and steamed 13 km in another direction, and then returned 12 km back to its original position. The captain then plotted the ship’s course on a nautical chart. She asked her first officer to look at the chart and ...
*March 22, 2011 by Brandon*

**Nautical**

I am just taking my first steps in learning Celestial Navigation. Some elements are becomong clear to me and with practice I will soon be able to take sights and establish the GP of a star. However I am having difficulty with sight reduction. I have come across several ways of...
*December 23, 2007 by Mike*

**Trig application**

I am having trouble with this question. A privately owned yacht leaves a dock in Myrtke Beach, South Carolina, and heads toward Freeport in the Bahamas at a bearing of S 1.4 degrees E. The yacht averages a speed of 20 knots over the 428-nautical- mile trip. A. How long will it...
*February 21, 2015 by Hutch*

**Nautical Studies**

I understand it is a popular misconception that a magnetic compass points to the magnetic north pole. In fact a magnetic compass aligns itself with the magnetic lines of force in its own location. Here in the UK these lines of force seem to coincide very closely with the ...
*October 31, 2007 by Mike*