Friday
August 29, 2014

Search: A 7.0-kg block on a horizontal frictionless surface is attached to a light spring (force constant = 1.2 kN/m). The block is initially at rest at its equilibrium position when a force

Number of results: 42,294

physics
A physics student pulls a block of mass m = 23 kg up an incline at a slow constant velocity for a distance of d = 4 m. The incline makes an angle q = 25° with the horizontal. The coefficient of kinetic friction between the block and the inclined plane is µk = 0.3. a) What is ...
March 11, 2012 by Mel

Physics
In 0.780 s, a 6.50-kg block is pulled through a distance of 3.85 m on a frictionless horizontal surface, starting from rest. The block has a constant acceleration and is pulled by means of a horizontal spring that is attached to the block. The spring constant of the spring is ...
November 30, 2011 by Anne

Physics
In 0.369 s, a 14.2-kg block is pulled through a distance of 3.60 m on a frictionless horizontal surface, starting from rest. The block has a constant acceleration and is pulled by means of a horizontal spring that is attached to the block. The spring constant of the spring is ...
November 13, 2012 by cody

physics
In 0.511 s, a 13.1-kg block is pulled through a distance of 3.13 m on a frictionless horizontal surface, starting from rest. The block has a constant acceleration and is pulled by means of a horizontal spring that is attached to the block. The spring constant of the spring is ...
July 19, 2013 by Anonymous

physics
) A 4.8 kg block attached to a spring executes simple harmonic motion on a frictionless horizontal surface. At time t = 0 s, the block has a displacement of -0.90 m a velocity of -0.80 m/s and an acceleration of +2.9 m/s^2. The force constant of the spring is closest to:
December 3, 2013 by Anonymous

physics
The block in the figure below lies on a horizontal frictionless surface and is attached to the free end of the spring, with a spring constant of 65 N/m. Initially, the spring is at its relaxed length and the block is stationary at position x = 0. Then an applied force with a ...
December 14, 2008 by help

Physics to be solved
The block in the figure below lies on a horizontal frictionless surface and is attached to the free end of the spring, with a spring constant of 55 N/m. Initially, the spring is at its relaxed length and the block is stationary at position x = 0. Then an applied force with a ...
October 26, 2012 by Rioster2012

physics help needed very urgent !!!
The block in the figure below lies on a horizontal frictionless surface and is attached to the free end of the spring, with a spring constant of 55 N/m. Initially, the spring is at its relaxed length and the block is stationary at position x = 0. Then an applied force with a ...
October 26, 2012 by helper

physics
I would like to thoroughly understand each steo to solve this. In 0.750s, a 7.0kg block is pulled through a distance of 4.0m on a frictionless horizontal surface from rest. the block has a constant acceleration and is pulled by means of a horizontal spring attached to the ...
November 12, 2009 by Inascent

Physics
A 0.409 kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 19.5 N/m. The block rests on a frictionless surface. A 0.0500 kg wad of putty is thrown horizontally at the block, hitting it with an initial speed of 2.32 m/s ...
April 22, 2010 by Physics

Physics
A 2.1 kg block slides with a speed of 1.1 m/s on a frictionless, horizontal surface until it encounters a spring. (a) If the block compresses the spring 5.7 cm before coming to rest, what is the force constant of the spring? (b) What initial speed should the block have to ...
March 29, 2010 by Carden

Physics
A 4.07 x 10-2-kg block is resting on a horizontal frictionless surface and is attached to a horizontal spring whose spring constant is 144 N/m. The block is shoved parallel to the spring axis and is given an initial speed of 10.5 m/s, while the spring is initially unstrained. ...
May 2, 2014 by Elle

Physics
A 4.07 x 10-2-kg block is resting on a horizontal frictionless surface and is attached to a horizontal spring whose spring constant is 144 N/m. The block is shoved parallel to the spring axis and is given an initial speed of 10.5 m/s, while the spring is initially unstrained. ...
May 2, 2014 by Elle

physics
The block in the figure below lies on a horizontal frictionless surface and is attached to the free end of the spring, with a spring constant of 60 N/m. Initially, the spring is at its relaxed length and the block is stationary at position x = 0. Then an applied force with a ...
October 25, 2009 by henry

Physics
A 0.409 kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 19.5 N/m. The block rests on a frictionless surface. A 0.0500 kg wad of putty is thrown horizontally at the block, hitting it with an initial speed of 2.32 m/s ...
April 29, 2010 by Carden

Physics
A 0.490-kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 25.0N/m . The block rests on a frictionless surface. A 6.00×10−2-kg wad of putty is thrown horizontally at the block, hitting it with a speed of 2.10m/s and...
October 25, 2013 by Lhaedy

Physics
A block of mass M=6 kg and initial velocity v=0.8m/s slides on a frictionless horizontal surface and collides with a relaxed spring of unknown spring constant. The other end of the spring is attached to a wall. If the maximum compression of the spring is 0.2 m, what is the ...
July 21, 2013 by Helena Beau

physics
[20 pts] A 2.00 kg block is pushed against a spring with negligible mass and force constant k = 400 N/m, compressing it 0.220 m. When the block is released, it moves along a frictionless, horizontal surface and then up a frictionless incline with slope 37 degrees. (a) What is ...
August 19, 2010 by joy

physics ( please help me)
A 2.00kg block is pushed against a spring with force constant k=400N(m^-1), compressing it 0.180m. The block is then released and moves along a frictionless horizontal surface and then up frictionless incline with slope angle 37.0degrees. a. What is the speed of the block as ...
February 23, 2012 by taylor

Physics
A 6 kg block free to move on a horizontal, frictionless surface is attached to a spring. The spring is compressed 0.16 m from equi- librium and released. The speed of the block is 1.44 m/s when it passes the equilibrium po- sition of the spring. The same experiment is now ...
January 5, 2014 by Name

Physics
A 6 kg block free to move on a horizontal, frictionless surface is attached to a spring. The spring is compressed 0.16 m from equi- librium and released. The speed of the block is 1.44 m/s when it passes the equilibrium po- sition of the spring. The same experiment is now ...
January 5, 2014 by Alex

physics
A 0.330-kg block of wood rests on a horizontal frictionless surface and is attached to a spring (also horizontal) with a 29.5-N/m force constant that is at its equilibrium length. A 0.0600-kg wad of Play-Doh is thrown horizontally at the block with a speed of 3.00 m/s and ...
November 30, 2012 by HELP!!!

physics
In Figure (a), a block of mass m lies on a horizontal frictionless surface and is attached to one end of a horizontal spring (spring constant k) whose other end is fixed. The block is initially at rest at the position where the spring is unstretched (x = 0) when a constant ...
October 24, 2009 by Jin

physics
A 0.940 kg block is attached to a horizontal spring with spring constant 2550 N/m. The block is at rest on a frictionless surface. A 7.90 g bullet is fired into the block, in the face opposite the spring, and sticks. What was the bullet's speed if the subsequent oscillations ...
April 13, 2010 by zidd

Physics
Block A of mass 2.0 kg and Block B of 8.0 kg are connected by a spring of spring constant 80 N/m and negligible mass. The system is being pulled to the right across a horizontal frictionless surface by a horizontal force of 4.0 N, with both blocks experiencing equal constant ...
November 14, 2012 by Alexa

PHYSICS
A block of mass m lies on a horizontal frictionless surface and is attached to one end of a horizontal spring (spring constant k) whose other end is fixed. The block is initially at rest at the position where the spring is unstretched (x = 0) when a constant horizontal force ...
October 21, 2011 by Anonymous

physics
A 500g block is released from rest and slides down a frictionless track that begins 2m above the horizontal. At the bottom of the track, where the surface is horizontal, the block strikes and sticks to a light spring with a spring constant of 20.0N/m. Find the maximum distance...
August 10, 2011 by AJ

Physics
A block of mass m = 2.00 kg is attached to a spring of force constant k = 5.15 102 N/m that lies on a horizontal frictionless surface as shown in the figure below. The block is pulled to a position xi = 5.75 cm to the right of equilibrium and released from rest. (a) Find the ...
December 6, 2012 by Ame

Physics
A block of mass m = 2.00 kg is attached to a spring of force constant k = 5.15 102 N/m that lies on a horizontal frictionless surface as shown in the figure below. The block is pulled to a position xi = 5.75 cm to the right of equilibrium and released from rest. (a) Find the ...
December 6, 2012 by Ame

Physics
An ideal massless spring is fixed to the wall at one end. A block of mass M attached to the other end of the spring oscillates with amplitude A on a frictionless, horizontal surface. The maximum speed of the block is V_m. The force constant of the spring is a)Mg/A b)MgV_m/2A c...
March 25, 2007 by Tammy

physics
a 2.00 kg block is attached to a spring of force constant 500 N/m. The block is pulled 5.00 cm to the right of equilibrium and released from rest. Find the speed of the block as it passes through equilibrium if a) the horizontal surface is frictionless and b) the coefficient ...
March 7, 2007 by Jean

Physics
A 500 g block is released from rest and slides down a frictionless track that begins h = 1.70 m above the horizontal, as shown in Figure P13.56. At the bottom of the track, where the surface is horizontal, the block strikes and sticks to a light spring with a spring constant ...
December 5, 2010 by Anonymous

physics
An 8 g bullet is shot into a 4.0 kg block, at rest on a frictionless horizontal surface. The bullet remains lodged in the block. The block moves into a spring and compresses it by 7.9 cm. The force constant of the spring is 1400 N/m. What is the impulse of the block (including...
November 6, 2012 by Zach

Physics
A 1.80 kg block slides on a frictionless horizontal surface. The block hits a spring with a speed of 2.00 m/s and compresses it a distance of 11.0 cm before coming to rest. What is the force constant of the spring?
October 17, 2010 by Anonymous

Physics
A 1.80 kg block slides on a frictionless horizontal surface. The block hits a spring with a speed of 2.00 m/s and compresses it a distance of 11.0 cm before coming to rest. What is the force constant of the spring?
October 17, 2010 by Lauren

Physics
A 1.2 kg block is attached to a horizontal 23 N/m spring and resting on a frictionless horizontal surface. The block is set oscillating with amplitude 10 cm and phase constant – π/2. A 2nd block with mass 0.8 kg moving at 1.7 m/s collides inelastically (the blocks stick ...
May 24, 2012 by Erick

Physics
A 500 g block is released from rest and slides down a frictionless track that begins h = 1.70 m above the horizontal, as shown in Figure P13.56. At the bottom of the track, where the surface is horizontal, the block strikes and sticks to a light spring with a spring constant ...
December 6, 2010 by Anonymous

Physics
A 0.500 kg block is sitting on a horizontal, frictionless surface. The block is connected to a horizontal spring with a force constant of 124 N/m. The other end of the horizontal spring rests against a wall. When a 100.0 g arrow is fired into the wooden block, the spring ...
November 19, 2009 by Jon

Physics
A 0.500 kg block is sitting on a horizontal, frictionless surface. The block is connected to a horizontal spring with a force constant of 124 N/m. The other end of the horizontal spring rests against a wall. When a 100.0 g arrow is fired into the wooden block, the spring ...
November 19, 2009 by Jon

physics
A block of ice of mass 4.10 kg is placed against a horizontal spring that has force constant k = 210 N/m and is compressed a distance 2.60×10−2 m. The spring is released and accelerates the block along a horizontal surface. You can ignore friction and the mass of the ...
October 7, 2010 by ami

mechanics
Jayden holds a 3kg block pressed up against a spring on a horizontal and frictionless surface. The spring has a spring constant of 300Nm. The spring is fixed in place, but the block is free to move. The spring is initially compressed by .5 m and the block is at rest. Jayden ...
July 6, 2014 by juanpro

Physics 2
A 10 g bullet is fired into, and embeds itself in, a 2 kg block attached to a spring with a force constant of 19.6 n/m and whose mass is negligible. How far is the spring compressed if the bullet has a speed of 300 m/s just before it strikes the block and the block slides on a...
January 20, 2012 by Dee

Mechanics
A 30.0-kg block is resting on a flat horizontal table. On top of this block is resting a 15.0-kg block, to which a horizontal spring is attached, as the drawing illustrates. The spring constant of the spring is 325 N/m. The coefficient of kinetic friction between the lower ...
March 5, 2012 by MLC

Physics help
A 0.50-kg block rests on a horizontal, frictionless surface, it is pressed against a light spring having a spring constant of k = 800 N/m, with an initial compression of 2.0 cm. To what height h does the block rise when moving up the incline? what would be the h if the ...
June 17, 2012 by user

Physics
A 2.1 kg block slides with a speed of 1.1 m/s on a frictionless, horizontal surface until it encounters a spring. (a) If the block compresses the spring 5.7 cm before coming to rest, what is the force constant of the spring? (b) What initial speed should the block have to ...
March 30, 2010 by Carden

Physics
Suppose the block is released from rest with the spring compressed 5.50 cm. The mass of the block is 1.60 kg and the force constant of the spring is 965 N/m . Assume the surface is frictionless. A) What is the speed of the block when the spring expands to a compression of only...
May 26, 2013 by Leah

Physics help please!!!
A 2.10 kg frictionless block is attached to an ideal spring with force constant 315N/m . Initially the block has velocity -3.75m/s and displacement 0.270m . Find (a) the amplitude of the motion. (b) the maximum acceleration of the block. (c) the maximum force the spring exerts...
March 27, 2012 by john

physics
A 200 gram block is attached to a spring with a spring constant of 8 N/m. The spring oscillates horizontally on a frictionless surface. Its velocity is 80 cm/s when x = - 4.2 cm. a. What is the amplitude of oscillation? b. What is the block’s maximum acceleration? c. What is ...
December 11, 2011 by Anonymous

Physics
A 2.95 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0330 m. The spring has force constant 900 N/m. The coefficient of kinetic friction between the floor and the block is 0.42 . The block and spring are released from rest and ...
March 13, 2012 by Kelsey

Physics
A 2.5-kg block is sliding along a rough horizontal surface and collides with a horizontal spring whose spring constant is 320 N/m. Unstretched, the spring is 20.0 cm long. The block causes the spring to compress to a length of 12.5 cm as the block temporarily comes to rest. ...
May 30, 2014 by Drew

physics ( please help me)
a block with a mass of 5.00 kg is moving at 8.00 m/s^-1 along a frictionless horizonal surface toward a spring with force constant k= 500 N/m^1 that is attached to a wall.find the maximum distance the spring is compressed. the spring has negligible mass.
February 23, 2012 by taylor

Phsics
What force must be exerted on block A in order for block b not to fall. The coefficient of static friction between block A and B is 0.55, and the horizontal surface is frictionless. A= 100kg and B=10kg A is on the horizontal surface and B is attached to A.
October 3, 2011 by Kayla

Physics
What force must be exerted on block A in order for block b not to fall. The coefficient of static friction between block A and B is 0.55, and the horizontal surface is frictionless. A= 100kg and B=10kg A is on the horizontal surface and B is attached to A.
October 3, 2011 by Kayla

physics
A light spring with force constant 3.85 N/m is compressed by 5.00 cm as it is held between a 0.250 kg block on the left and a 0.500 kg block on the right, both resting on a horizontal surface. The spring exerts a force on each block, tending to push them apart. The blocks are ...
February 24, 2009 by Jessi

Physics
A block with mass 0.55 kg on a frictionless surface is attached to a spring with spring constant 43 N/m. The block is pulled from the equilibrium position and released. What is the period of the system?
June 15, 2012 by Regan

Physics
A block with mass 0.55 kg on a frictionless surface is attached to a spring with spring constant 43 N/m. The block is pulled from the equilibrium position and released. What is the period of the system?
June 16, 2012 by Kevin

physics
A moving 1.60 kg block collides with a horizontal spring whose spring constant is 295 N/m. The block compresses the spring a maximum distance of 3.50 cm from its rest position. The coefficient of kinetic friction between the block and the horizontal surface is 0.500. What is ...
February 28, 2008 by rory

Physics
A moving 4.80 kg block collides with a horizontal spring whose spring constant is 243 N/m. The block compresses the spring a maximum distance of 5.50 cm from its rest position. The coefficient of kinetic friction between the block and the horizontal surface is 0.390. What is ...
March 5, 2008 by Courtney

physics
A moving 3.20 kg block collides with a horizontal spring whose spring constant is 224 N/m. The block compresses the spring a maximum distance of 5.50 cm from its rest position. The coefficient of kinetic friction between the block and the horizontal surface is 0.490. What is ...
December 30, 2013 by Laura

Physics
A moving 3.20 kg block collides with a horizontal spring whose spring constant is 224 N/m. The block compresses the spring a maximum distance of 5.50 cm from its rest position. The coefficient of kinetic friction between the block and the horizontal surface is 0.490. What is ...
December 31, 2013 by Laura

Physics
A moving 3.20 kg block collides with a horizontal spring whose spring constant is 224 N/m. The block compresses the spring a maximum distance of 5.50 cm from its rest position. The coefficient of kinetic friction between the block and the horizontal surface is 0.490. What is ...
January 1, 2014 by Laura

Physics
A 3 kg block collides with a massless spring of spring constant 90 N/m attached to a wall. The speed of the block was observed to be 1.5 m/s at the moment of collision. The acceleration of gravity is 9.8 m/s^2. How far does the spring compress if the surface on which the mass ...
April 8, 2014 by I Need Help

physics
A block of mass 0.570 kg is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x. The force constant of the spring is 450 N/m. When it is released, the block travels along a frictionless, horizontal surface to point B, the bottom of...
March 2, 2009 by Jessi

physics
A block with mass 0.55 kg on a frictionless surface is attached to a spring with spring constant 39 N/m. The block is pulled from the equilibrium position and released. What is the period of the system? answer in seconds...
February 24, 2011 by caila

physics
A 200 gram block is attached to a spring with a spring constant of 8 N/m. The spring oscillates horizontally on a frictionless surface. Its velocity is 80 cm/s when x = - 4.2 cm. a. What is the amplitude of oscillation? b. What is the block’s maximum acceleration? c. What is ...
December 11, 2011 by SOMEONE PLEASE HELP

Physics help pleaseeee
A horizontal spring with a spring constant of 200.0 N/m is compressed 25.0 cm and used to launch a 3.00 kg block across a frictionless surface. After the block travels some distance, the block goes up a 32 degree incline that has a coefficient of friction of 0.25 between the ...
November 16, 2011 by Me

Physics Help Please
A horizontal spring with a spring constant of 200.0 N/m is compressed 25.0 cm and used to launch a 3.00 kg block across a frictionless surface. After the block travels some distance, the block goes up a 32 degree incline that has a coefficient of friction of 0.25 between the ...
November 17, 2011 by Anonymous

physics please help!!
A moving 2.20kg block collides with a horizontal spring whose spring constant is 419 N/m. The block compresses the spring a maximum distance of 9.00cm from its rest postion. The coefficient of kinetic friction between the block and the horizontal surface is 0.140. a) What is ...
October 6, 2011 by archi

physics
A 30.0-kg block is resting on a flat horizontal table. On top of this block is resting a 15.0-kg block, to which a horizontal spring is attached, as the drawing illustrates. The spring constant of the spring is 340 N/m. The coefficient of kinetic friction between the lower ...
November 26, 2013 by Donna

Physics
A horizontal spring attached to a wall has a force constant of 780 N/m. A block of mass 1.70 kg is attached to the spring and oscillates freely on a horizontal, frictionless surface as in the figure below. The initial goal of this problem is to find the velocity at the ...
September 27, 2011 by caitlin

Physics
A 1.07 kg block slides across a horizontal surface directly toward a massless spring with spring constant 4,794 N/m. The surface is frictionless except for a rough patch of length 0.461 m that has coefficient of kinetic friction 0.358. The initial velocity of the block is 4.12...
May 14, 2012 by Jennifer

phys2
A 2.9-kg block is released from rest and allowed to slide down a frictionless surface and into a spring. The far end of the spring is attached to a wall, as shown. The initial height of the block is 0.34 m above the lowest part of the slide and the spring constant is 347 N/m...
February 26, 2012 by opp

physics
A 4 kg block is pushed by an external force against a spring with spring constant 137 N/m until the spring is compressed by 2.1 m from its uncompressed length (x = 0). The block rests on a horizontal plane that has a coefficient of kinetic friction of 0.58 but is NOT attached ...
February 27, 2014 by uriel

phsyics
an 8g bullet is shot into a 4kg block at rest on a frictionless horizontal surface. the bullet remains lodged in the block. the block movies into a spring and compresses it by 3cm. the force constant of the spring is 1500N/m. the initial speed of the bullet is closest to?
November 6, 2008 by joyce

physics again it didnt work.
A moving 1.60 kg block collides with a horizontal spring whose spring constant is 295 N/m. The block compresses the spring a maximum distance of 3.50 cm from its rest position. The coefficient of kinetic friction between the block and the horizontal surface is 0.500. What is ...
March 1, 2008 by rory

physics
Two blocks of masses M and 3M are placed on a horizontal, frictionless surface. A light spring is attached to one of them, and the blocks are pushed together with the spring between them. A cord initially holding the blocks together is burned; after this the block of mass 3M ...
October 31, 2009 by Anonymous

physics
A light spring with force constant 3.00 N/m is compressed by 6.00 cm as it is held between a 0.350 kg block on the left and a 0.700 kg block on the right, both resting on a horizontal surface. The spring exerts a force on each block, tending to push them apart. The blocks are ...
November 9, 2010 by natalie

phys223
What is the amplitude of the motion? Remember, at t = 0 a block with mass M = 5 kg moves with a velocity v = 2 m/s at position xo = -.33 m from the equilibrium position of the spring. The block is attached to a massless spring of spring constant k = 61.2 N/m and slides on a ...
September 30, 2013 by eddy

physics
a block of mass 2 kg and block B of mass 8 kg are connected by a spring of spring constant 80 N/m and negligible mass. The system is being pulled to the right across a horizontal frictionless surface by a horizontal force 4 N with both blocks experiencing equal constant ...
June 9, 2008 by shelly

physics
A horizontal spring with a spring constant of 22 N/m has a 600 gram block attached to it and is at rest on a frictionless surface. A second block which has a mass of 220 grams is pushed toward the 600 gram block at a speed of 1.50 m/s. The second block collides with and sticks...
December 10, 2011 by Anonymous

physics
A horizontal spring with a spring constant of 22 N/m has a 600 gram block attached to it and is at rest on a frictionless surface. A second block which has a mass of 220 grams is pushed toward the 600 gram block at a speed of 1.50 m/s. The second block collides with and sticks...
December 10, 2011 by Anonymous

Physics Energy & Acceleration
A light spring with force constant 3.45 N/m is compressed by 7.92 cm as it is held between a 0.241 kg block on the left and a 0.482 kg block on the right, both resting on a horizontal surface. The spring exerts a force on each block, tending to push them apart. The blocks are ...
November 1, 2011 by mR. Ba3BOOS

Physics
Problem 4: A 250 g block is dropped onto a relaxed vertical spring that has a spring constant of k= 2.5 N/cm. The block becomes attached to the spring and compresses the spring 12 cm before momentarily stopping. While the spring is being compressed, (a) what work is done on ...
December 1, 2013 by Mariam

physics
A spring (spring 1) with a spring constant of 520N/m is attached to a wall and connected to another weaker spring (spring 2) with a spring constant of 270N/m on a horizontal surface. Then an external force of 70N is applied to the end of the weaker spring (#2). how much ...
June 29, 2013 by victoria

physics
the spring that has spring constant of 100N/M. It is compressed 15cm,then launches a200g block. The horizontal surface is frictionless, but the block has coefficient of kinetic friction on the incline is 0.20. What distance block sail through the air?
October 18, 2013 by simiso

PHYSICS
A 0.49 kg object is attached to a spring with a spring constant 167 N/m so that the object is allowed to move on a horizontal frictionless surface. The object is released from rest when the spring is compressed 0.12 m. Find the force on the object.
November 20, 2010 by KIM

Physics
A 20.0 kg block is connected to a 30.0 kg block by a string that passes over a light, frictionless pulley. The 30.0 kg block is connected to a spring that has negligible mass and a force constant of 200 N/m. The spring is unstretched when the 30.0 kg block is 20.0 cm above the...
March 3, 2009 by mightymouse

physics
Two blocks of masses m and M [M = 4.23m] are placed on a horizontal, frictionless surface. A light spring is attached to one of them, and the blocks are pushed together with the spring between them. A cord holding them together is burned, after which the block of mass M moves ...
January 23, 2011 by vanessa

Physics HELP!
A 20.0 g bullet is fired horizontally into a 85 g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 156 N/m. The bullet becomes embedded in the block. The bullet block system compresses the spring by a ...
October 16, 2012 by Megan

physics
An 8 g bullet is shot into a 4.0 kg block, at rest on a frictionless horizontal surface. The bullet remains lodged in the block. The block moves into a spring and compresses it by 3.7 cm. The force constant of the spring is 2500 N/m. In the figure, the initial velocity of the ...
March 31, 2014 by Georgey

p
A 16.0 g bullet is fired horizontally into a 87 g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 168 N/m. The bullet becomes embedded in the block. The bullet block system compresses the spring by a ...
October 21, 2012 by Anonymous

physics
A moving 2.8 kg block collides with a horizontal spring whose spring constant is 215 N/m (see figure). The block compresses the spring a maximum distance of 11.5 cm from its rest position. The coefficient of kinetic friction between the block and the horizontal surface is 0.48...
November 23, 2010 by help

physics
A 1.50-kg block slides on a rough, horizontal surface. The block hits a spring with a speed of 2.07 m/s and compresses it a distance of 12.2 cm before coming to rest. If the coefficient of kinetic friction between the block and the surface is μk = 0.577, what is the force...
October 24, 2012 by kay

Physics
A 1.70-kg block slides on a rough, horizontal surface. The block hits a spring with a speed of 2.00 m/s and compresses it a distance of 11.3 cm before coming to rest. If the coefficient of kinetic friction between the block and the surface is μk = 0.534, what is the ...
October 26, 2012 by Na

physics
A 16.0 g bullet is fired horizontally into a 87 g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 168 N/m. The bullet becomes embedded in the block. The bullet block system compresses the spring by a ...
October 21, 2012 by Anonymous

physics
A 16.0 g bullet is fired horizontally into a 87 g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 168 N/m. The bullet becomes embedded in the block. The bullet block system compresses the spring by a ...
October 22, 2012 by Anonymous

physics
A 10.0-g bullet is fired horizontally into a 101-g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 155 N/m. The bullet becomes embedded in the block. If the bullet-block system compresses the spring ...
November 11, 2012 by lilly

Physics
A 11.0-g bullet is fired horizontally into a 101-g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 160 N/m. The bullet becomes embedded in the block. If the bullet-block system compresses the spring ...
November 11, 2012 by Kelly

ph
A 20.0 kg block is connected to a 30.0 kg block by a string that passes over a light, frictionless pulley. The 30.0 kg block is connected to a spring that has negligible mass and a force constant of 300 N/m, as shown in the figure below. The spring is unstretched when the ...
November 14, 2011 by carlton

physics
A 20.0 kg block is connected to a 30.0 kg block by a string that passes over a light, frictionless pulley. The 30.0 kg block is connected to a spring that has negligible mass and a force constant of 300 N/m, as shown in the figure below. The spring is unstretched when the ...
November 14, 2011 by carlton

Pages: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Next>>

Search
Members