Thursday

July 31, 2014

July 31, 2014

Total # Posts: 11

**maths**

Prove that (2√3+3)sinx+2√3cosx lies between -(2√3+15) and (2√3+15)

**maths**

if cot (a+b)=0 then write the value of sin(a+2b)

**maths**

write the value of 2(sin^6+cos^6)-3(sin^4+cos^4)+1

**maths**

if sinx=cos^2x then write the value of cos^2x(1+cos^2x)

**math**

prove that sec(3 pie/2 -x) sec(x-5 pie/2) + tan (5 pie/2+x)tan(x-3 pie/2)=-1

**maths**

if tan^2x=1-e^2, prove that secx+tan^3x cosecx = (2-e^2)^3/2

**maths**

if sinX+cosX=m prove that sin^6X+cos^6X=4-3(m^2-1)^2/4 where m^2=<2

**maths**

prove that if cotx(1+sinx)=4m and cotx(1-sinx)=4n, then (m^2-n^2)^2=mn

**maths**

if tanX=a/b, then show that asinX-bcosX/asinX+bcosx = a^2-b^2/a^2+b^2

**math**

prove that cosx(tanx+2)(2tanx+1)=2secx+5sinx

**math**

prove that 2sinxcosx-cosx/1 -sinx+sin^2x-cos^2x=cotx

Pages: **1**