Wednesday

February 22, 2017
Total # Posts: 2,353

**calculus**

Where is your graph?

*September 1, 2012*

**math**

If log 7 mean logarithm to base b = 7 then : log 7 ( x ) = log 7 ( 4 ) + log 7 ( 3 ) log ( a ) + log ( b ) = log ( a * b ) log 7 ( 4 ) + log 7 ( 3 ) = log 7 ( 4 * 3 ) = log 7 ( 12 ) log 7 ( x ) = log 7 ( 12 ) x = 12

*September 1, 2012*

**Math**

A = sqrt [ s * ( s - a ) * ( s - b ) * ( s - c ) ]

*August 31, 2012*

**Math**

The semiperimeter of a triangle is half its perimeter. The formula for the semiperimeter of a triangle with side lengths a, b, and c is: s = ( a + b + c ) / 2 The area of a triangle can also be calculated from its semiperimeter using Heron's formula: A = [ sqrt s * ( s - a...

*August 31, 2012*

**Pre-algebra**

2 + 0.35 * 12 = 2 + 4.2 = 6.2

*August 31, 2012*

**MATH**

16 - 30 / ( 10 + 5 ) = 16 - 30 / 15 = 16 - 2 = 14

*August 27, 2012*

**geometry**

180 ° - x = 3 * ( 90 ° - x ) - 60 ° 180 ° - x = 270 ° - 3 x - 60 ° 180 ° - x = 210 ° - 3 x - x + 3 x = 210 ° - 180 ° 2 x = 30 ° Divide both sides by 2 x = 15 °

*August 25, 2012*

**math**

16 ^ 2 = 256 25 / 5 = 5 If 6(3)4 mean 6 * 3 * 4 then . 16^2-25/5+6(3)4= 256 - 5 + 72 = 323

*August 25, 2012*

**math**

Go on: wolframalpha dot com When page be open in rectangle type: derivative ln(cos(0.5)+(sin(x^2+3))^1/3) and click option = After few seconds when you see result click option: Show steps On wolfram alpha dot com you can practice any kind of calculus. That is good just for ...

*August 25, 2012*

**Algebra**

When p = 0 1 / p -> Infinity One solution also p < 0 becouse when p < 0 then 1 / 6 p are negative and 1 / 6 p + 14 < 20 So the exact solutions are : p < 0 and p > 1 / 36

*August 24, 2012*

**Algebra**

1 / ( 6 p ) + 14 < 20 Subtract 14 to both sides 1 / ( 6 p ) + 14 - 14 < 20 - 14 1 / ( 6 p ) < 6 Multiply both sides by 6p 6 p * 1 / ( 6 p ) < 6 p * 6 1 < 36 p Divide both sides by 36 1 /36 < 36 p / 36 1 / 36 < p that is equivalent of p > 1 / 36

*August 24, 2012*

**math**

P = 2 a + 2 b In your case : a = x , b = 2 x + 3 P = 2 a + 2 b = 72 P = 2 x + 2 * ( 2 x + 3 ) = 72 2 x + 4 x + 6 = 72 6x + 6 = 72 Subtract 6 to both sides 6 x + 6 - 6 = 72 - 6 6 x = 66 Divide both sides by 6 x =11 x = a = 11 cm b = 2 x + 3 b = 2 * 11 + 3 = 22 + 3 = 25 cm P = 2...

*August 24, 2012*

**Algebra**

1 p = p 1 p + 14 < 20 p + 14 < 20 Subtracrt 14 to both sides p + 14 - 14 < 20 - 14 p < 6

*August 24, 2012*

**math**

n = your number a = ones digit b = tenths digin c = hundreds digit d = thousands digit n = a + b / 10 + c / 100 + d / 1000 c = d + 3 b = c - 2 = d + 3 - 2 = d + 1 a = b + c = d + 1 + d + 3 = 2 d + 4 n = a + b / 10 + c / 100 + d / 1000 n = 2 d + 4 + ( d + 1 ) / 10 + ( d + 3...

*August 23, 2012*

**Algebra**

h = the height of the flagpole s = the height of the school h = ( 3 / 4 ) s s - h = 4.5 m s - ( 3 / 4 ) s = 4.5 ( 1 / 4 ) s = 4.5 Multiply both sides by 4 s = 18 The height of the school = 18 m

*August 23, 2012*

**math**

Take number 12 and subtract summ of first numbers 2 * 6 = 4 become 12 - ( 2 + 6 ) = 12 - 8 = 4 4 * 1 = 7 become 12 - ( 4 + 1 ) = 12 - 5 = 7 8 * 3 = 1 become 12 - ( 8 + 3 ) = 12 - 11 = 1 So 5 * 5 = x become 12 - ( 5 + 5 ) = 12 - 10 = 2 x = 2 5 * 5 = 2

*August 20, 2012*

**Math**

x = first number y = second number x - y = 16 that is equivalent of y = x - 16 x ^ 2 + y ^ 2 = x ^ 2 + ( x - 16 ) ^ 2 = x ^ 2 + x ^ 2 - 2 * x * 16 + 16 ^ 2 = 2 x ^ 2 - 32 x + 256 Quadratic equation a x ^ 2 + b x + c vhen a is positive in point : x = - b / 2 a have MINIMUM x...

*August 20, 2012*

**Algebra**

1.5 * 17.5 = 26.25 miles

*August 17, 2012*

**Algebra2**

1. Eliminate the absoulute value : x ^ 2 - 3 x + 3 = 3 x ^ 2 - 3 x + 3 = - 3 ______________________ x ^ 2 - 3 x + 3 = 3 Subtract 3 to both sides x ^ 2 - 3 x + 3 - 3 = 3 - 3 x ^ 2 - 3 x = 0 x ( x - 3 ) = 0 Solutions : x = 0 and x = 3 x ^ 2 - 3 x + 3 = - 3 Add 3 to both sides x...

*August 17, 2012*

**Algebra2**

1. Eliminate the absoulute value : 7 x + 2 = 10 7 x + 2 = - 10 _________________ 7 x + 2 = 10 7 x = 10 - 2 = 8 x = 8 / 7 7 x + 2 = - 10 7 x = - 10 - 2 = - 12 x = - 12 / 7 Solutions x = 8 / 7 aprox. 1.14 and x = - 12 / 7 aprox. - 1.71 2.Eliminate the absoulute value : Absolute ...

*August 16, 2012*

**algebra 2**

x + y = 2 Multiply both sides by 2 2 x + 2 y = 4 2 y = 4 - 2 x 3 x + 2 y = 9 3 x + 4 - 2 x = 9 x + 4 = 9 x = 9 - 4 = 5 x + y = 2 5 + y = 2 y = 2 - 5 = - 3

*August 16, 2012*

**math**

á = Greek letter alpha â = Greek letter beta

*August 16, 2012*

**math**

One of the most important properties of a straight line is in how it angles away from the horizontal. This concept is reflected in something called the "slope" of the line For straight lines, slope is constant (always the same). You can graph the points and "...

*August 16, 2012*

**math**

d = your digit d = 100 x + 10 y + z my hundreds digit is three more than my ones x = z + 3 that is equivalent with : z = x - 3 my tens digit is oneless than my hundreds y = x - 1 d = 100 x + 10 y + z d = 100 * x + 10 * ( x - 1 ) + x - 3 d = 100 x + 10 x - 10 + x - 3 = 111 x - ...

*August 16, 2012*

**Algebra**

If your expression mean : f ( x ) = 7 / ( x - 1 ) then : x = 0 f ( 0 ) = 7 / ( 0 - 1 ) = 7 / - 1 = - 7 x = 1 f ( 1 ) = 7 / 1 - 1 ) = 7 / 0 = infinity x = 2 f ( 2 ) = 7 / ( 2 - 1 ) = 7 / 1 = 7 x = 3 f ( 3 ) = 7 / ( 3 - 1 ) = 7 / 2 = 3.5 x = 4 f ( 4 ) = 7 / ( 4 - 1 ) = 7 / 3 = 2...

*August 16, 2012*

**Math**

Arithmetic mean : ( p1 + p2 + p3 + p4 + p5 ) / 5 = 21 Multiply both sides by 5 p1 + p2 + p3 + p4 + p5 = 21 * 5 = 105 p1 + p2 + p3 + p4 + p5 = Total points of team Total points of team = 105 If 4 other players obtained 1 point greatest score of one player could be : 105 - 4 = 101

*August 15, 2012*

**algebra 1**

3 ( 5 y - 5 x ) = 45 3 * 5 * ( y - x ) = 3 * 3 * 5 15 ( y - x ) = 3 * 15 Divide both sides by 15 y - x = 3 Add x to both sides y - x + x = 3 + x y = x + 3 If you must solve y = 0 0 = x + 3 Subtrac 3 to both sides 0 - 3 = x + 3 - 3 - 3 = x x = - 3 OR 3 ( 5 y - 5 x ) = 45 Divide...

*August 14, 2012*

**Algebra 1**

P = Perimeter W = Width L = Length P = 2 W + 2 L 36 = 2 * 4 + 2 L 36 = 8 + 2 L Subtract 8 to both sides 36 - 8 = 8 + 2 L - 8 28 = 2 L Divide both sides by 2 28 / 2 = 2 L / 2 14 = L L = 14 in

*August 12, 2012*

**algebra**

Vr = Vm * ( 1 - r ^ 2 / R ^ 2 ) Vr = ( 1 / 4 ) Vm ( 1 - r ^ 2 / R ^ 2 ) = 1 / 4 Multiply both sides by 4 4 * ( 1 - r ^ 2 / R ^ 2 )= 1 4 - 4 * r ^ 2 / R ^ 2 = 1 Subtract 4 to both sides 4 - 4 * r ^ 2 / R ^ 2 - 4 = 1 - 4 - 4 * r ^ 2 / R ^ 2 = - 3 Multiply both sides by - 1 4 * r...

*August 11, 2012*

**trig**

start-> programs-> Accessories-> Calculator-> View-> Scintific 17 sin

*August 9, 2012*

**math**

10 ^ 6 = 10 * 10 * 10 * 10 * 10 * 10 = 1 000 000 = one milion 4.97 * 10 ^ 6 = 4 970 000

*August 9, 2012*

**Algebra**

1,760 / 0.04 = 44,000 $

*August 5, 2012*

**Algebra 1**

d = r t 48 = r * 16 Divide both sides by 16 48 / 16 = r * 16 / 16 3 = r r = 3

*August 5, 2012*

**Algebra**

- 2 ( t - 7 ) - ( t + 8 ) = 8 - 2 * t - 2 * ( - 7 ) - t - 8 = 8 - 2 t + 14 - t - 8 = 8 - 3 t + 6 = 8 Subtrac 6 to both sides - 3 t + 6 - 6 = 8 - 6 - 3 t = 2 divide both sides by - 3 t = - 2 / 3

*August 5, 2012*

**algebra**

a + 7b = 17 - a + 2b = 2 __________ ( a - a ) + ( 7b - 2b ) = 17 - 2 5b = 15 Divide both sides by 5 b = 15 / 5 = 3 a + 7b = 17 a + 7 * 3 = 17 a + 21 = 17 Subtract 21 to both sides a + 21 - 21 = 17 - 21 a = - 4

*August 5, 2012*

**mathematics**

In point where firs derivative = 0 function have loca minimum or maximum. If second derivative < 0 that is local maxsimum. If second derivative > 0 that is local minimum. If expression 3cos2x mean : 3 cos (2 x ) then first derivative = - 6 sin ( 2 x ) - 6 sin( 2 x ) = 0 ...

*August 4, 2012*

**math**

x + 3 y = 7 Subtract 3 y to both sides x + 3 y - 3 y = 7 - 3 y x = 7 - 3 y Put x = 7 - 3 y into equation x + 4 y = 12 7 - 3 y + 4 y = 12 7 + y = 12 Subtract 7 to both sides 7 + y - 7 = 12 - 7 y = 5 Replacing y = 5 into x = 7 - 3 y gives x = 7 - 3 * 5 x = 7 - 15 x = - 8

*August 4, 2012*

**math**

Set of known values: x = 1 , y = 280 x = 2 , y = 480 x = 3 , y = 684 x = 4 , y = 913 x = 5 , y = 1205 x = 6 , y = 1615 The interpolating polynomial is : y = ( 17 x ^ 4 - 86 x ^ 3 + 139 x ^ 2 + 4730 x + 1920 ) / 24 For x = 7 , y = 2215 Next term : 2215

*August 3, 2012*

**Algebra**

After half hour studen have 9 - 1 = 8 $ x = 8 / 1.25 = 6.4 h A partial hour is charge the same as a full hour so x = 6 h 0.5 + x = 0.5 + 6 = 6.5 h

*August 1, 2012*

**Mathematics**

1 h = 60 min 9 h 07 mim = 8 h + 1 h + 7 min = 8 h + 60 min + 7 min = 8 h 67 min 9 h 7 min - 8 h 55 min = 8 h 67 min - 8 h 55 min = 12 min Distance : 1083 km - 957 km = 126 km The average speed : 1 h = 60 min 12 min = 1 / 5 h 126 / ( 1 / 5 ) = 5 * 126 = 630 km / h

*July 31, 2012*

**maths**

tan theta = H / L tan theta = 4 / 1.8 = 2.222222 theta = 65 ° 46 ´ 20 "

*July 31, 2012*

**math**

4 x + 3 y = 0 16 x + 3 = 8y ______________ Multiply the first equation by 4 16 x + 12 y = 0 16 x + 3 = 8y ______________ Subtract 8 y by second equation 16 x + 12 y = 0 16 x + 3 - 8 y = 8y - 8y = 0 ______________ 16 x + 12 y = 0 16 x + 3 - 8 y = 0 ______________ Subtract 3 by ...

*July 31, 2012*

**calculus**

Go on : wolframalpha dot com Whe page be open in rectangle type : derivative tan^4(2x) then click option = After few seconds when you see result click option : Show steps

*July 28, 2012*

**Algebra**

Remark: ¡Ý mean greater or equal

*July 28, 2012*

**Algebra**

5 ( x + 6 ) = 5 x + 30 12 x - 25 ¡Ý 3 x - 5 ( x + 6 ) 12 x - 25 ¡Ý 3 x - ( 5 / x - 6 ) ) 12 x - 25 3 x - ( 5 x + 30 ) 12 x - 25 ¡Ý 3 x - 5 x - 30 12 x - 25 ¡Ý - 2 x - 30 Add 2 x to both dides 12 x - 25 + 2 x ¡Ý...

*July 28, 2012*

**math**

12 % = 12 / 100 = 0.12 250 / 0.12 = 250 * 100 / ( 0.12 * 100 ) 25,000 / 12 = 2 * 2 * 2 * 5 * 5 * 5 * 5 * 5 / ( 2 * 2 * 3 ) = 2 * 5 * 5 * 5 * 5 * 5 / 3 = 6250/ 3 = 2083.3333...

*July 28, 2012*

**Math**

1 kg = 1000 g 2 kg 300 g = 1 kg + 1 kg + 300 g = 1 kg + 1000 g + 300 g = 1 kg 1300 g 2 kg 300 g - 1 kg 700 g = 1 kg 1300 g - 1 kg 700 g = 600 g The mass of the empty basket = 600 g

*July 28, 2012*

**Math**

L = 2 + 2 W = 2 ( 1 + W ) A = L * W 24 = 2 * ( 1 + W ) * W 24 = 2 * ( W + W ^ 2 ) Divide both sides by 2 12 = W + W ^ 2 Subtract 12 to both sides 0 = W + W ^ 2 - 12 Now you must solwe equation : W ^ 2 + W - 12 = 0 The exact solutions are 3 and - 4 Width cannot be negative so W...

*July 27, 2012*

**math**

The vertex of a parabola: y = a x ^ 2 + b x + c is the point where the parabola crosses its axis. If the coefficient of the x ^ 2 term is positive, the vertex will be the lowest point on the graph, the point at the bottom of the “U”-shape. If the coefficient of the x...

*July 26, 2012*

**calculus**

Go on: wolframalpha dot com When page be open in rectangle type: limit x^3-2/x^2+x as x-> - infinity and click option = After few seconds when you see result click option: Show steps On wolfram alpha dot com you can practice any kind of calculus. That is good just for ...

*July 25, 2012*

**calculus**

Go on: wolframalpha dot com When page be open in rectangle type: derivative sin(x^3-5x^2+4x-7) and click option = After few seconds when you see result click option: Show steps On wolfram alpha dot com you can practice any kind of calculus. That is good just for practice. You ...

*July 23, 2012*

**math help**

P.S. When you type : derivative (x^2+lnx)(2+e^x) you must click option = in rectangle

*July 20, 2012*

**math help**

Go on : wolframalpha dot com When page be open in rectangle type : derivative (x^2+lnx)(2+e^x) After few seconds when you see results click option : Show steps

*July 20, 2012*

**math help**

What is your question?

*July 20, 2012*

**math**

What is your question?

*July 19, 2012*

**Geometry**

tan ( theta ) = 4 / 3 theta = inverse tangent ( 4 / 3 ) theta = 53 ° 7 ´ 48 " theta = 53 ° to the nearest degree

*July 19, 2012*

**Math**

¡Ý mean greater or equal

*July 18, 2012*

**Math**

- 5 ( 4 x - 14 ) ¡Ý - 25 x + 35 - 20 x + 70 ¡Ý - 25 x + 35 - 20 x + 25 x ¡Ý 35 - 70 5 x ¡Ý - 35 Divide both sides by 5 x ¡Ý - 7 Ansver D

*July 18, 2012*

**Algebra**

The graph of any function in the form y = a x ^ 2 + b x + c is a parabola. A quadratic equationhas two solutions. In this case : x 1 = [ - 3 -s qrt ( 29 ) ] / 10 and x 2 = [ - 3 + sqrt ( 29 ) ] / 10 If coefficient a is positive then the graph of parabola is concave up. If ...

*July 16, 2012*

**ALGEBRA**

x = - 6 y = ( 4 / 3 ) * ( - 6 ) + 1 = - 24 / 3 + 1 = - 8 + 1 = - 7 x = - 3 y = ( 4 / 3 ) * ( - 3 ) + 1 = - 12 / 3 + 1 = - 4 + 1 = - 3 x = 6 y = ( 4 / 3 ) * 6 + 1 = 24 / 3 + 1 = 8 + 1 = 9 For plot : In google type : point plotter When you see list of result click on: Graph ...

*July 15, 2012*

**ALGEBRA**

The x-intercept of a line is the point at which the line crosses the x axis. ( i.e. where the y value equals 0 ) In this case : - 4 x + 9 * 0 = - 36 - 4 x = - 36 Divide both sides by -4 x = - 36 / - 4 = 9 x - intercept point (9,0) The z-intercept of a line is the point at ...

*July 15, 2012*

**algebra**

L = Length W = Width The perimeter of a rectangle P = 2 L + 2 W In this case W = 2 m P = 34 m 34 = 2 L + 2 * 2 34 = 2 L + 4 Subtract 4 for both sides 34 - 4 = 2 L + 4 - 4 30 = 2 L Divide both sides by 2 15 = L L = 15 m

*July 14, 2012*

**Calculus**

y = sqrt ( 3 x ) = sqrt ( 3 ) * sqrt ( x ) d y / d x =sqrt ( 3 ) * 1 / 2 sqrt ( x ) d y / d x = ( 1 / 2 ) * sqrt ( 3 / x )

*July 12, 2012*

**Integrated Math 1**

If you want to see graph go on: rechneronline.de In blue rectangle type : - x ^ 2 + 25 Set : Range x-axis from - 10 to 10 Range x-axis from - 10 to 40 and click option Draw

*July 11, 2012*

**Integrated Math 1**

Answer A.

*July 11, 2012*

**Integrated Math 1**

The standard equation of a parabola is : y = a x ^ 2 + bx + c The vertex of a parabola is the point where the parabola crosses its axis. If the coefficient of the x ^ 2 term is positive, the vertex will be the lowest point on the graph, the point at the bottom of the “U&#...

*July 11, 2012*

**math**

Rate Sam works : ( 1 job ) / x hrs Rate Denise works : ( 1 job ) / ( x + 2) hrs Rate together : 1 / x + 1 / ( x + 2 ) =

*July 11, 2012*

**TRIG**

cos theta = + OR - 1 / sqrt ( 1 + tan ^ 2 theta ) In Quadrant II, cosine are negative so : cos theta = - 1 / sqrt ( 1 + tan ^ 2 theta ) cos theta = - 1 / sqrt [ 1 + ( 3 / 4 ) ^ 2 theta ] cos theta = - 1 / sqrt ( 1 + 9 / 16 ) cos theta = - 1 / sqrt ( 16 / 16 + 9 / 16 ) cos ...

*July 11, 2012*

**algebra**

How can a square table have different length and height?

*July 11, 2012*

**Integrated Math 1**

- 1 - 6 x ^ 2 - x ^ 3 - ( - 2 - 4 x ^ 2 ) = - 1 - 6 x ^ 2 - x ^ 3 + 2 + 4 x ^ 2 = - x ^ 3 - 2 x ^ 2 + 1 OR 1 - 2 x ^ 2 - x ^ 3 Answer A.

*July 11, 2012*

**Integrated Math 1**

- 16 x ^ 2 - x ^ 3 - ( - 2 - 4 x ^ 2 ) = - 16 x ^ 2 - x ^ 3 + 2 + 4 x ^ 2 = - x ^ 3 - 12 x ^ 2 + 2

*July 11, 2012*

**trigonometry**

If a central angle theta = 3 pi / 2 then : Circumference of a circle = 2 * r * pi Ful circle have 360 ° = 2 pi radians. Lenght of arc : L = ( theta / 2 pi ) * 2 * r * pi L = theta * r = 60 ( 3 pi / 2 ) * r = 60 Multiply both sides by 2 3 pi * r = 120 Divide both sides by 3...

*July 11, 2012*

**Math**

f = frame = 2.5 cm p = dimension of frame p + f = dimension of one side of square Area of a square painting : A = ( p + f ) ^ 2 = 3600 p + f = sqrt ( 3600 ) p + f = 60 p + 2.5 = 60 p = 60 - 2.5 = 57.5 cm

*July 11, 2012*

**Integrated math**

Definite integral 1 to 3 ( 3 x ^ 2 - 2 x + 1 ) dx = ( x ^ 3 - x ^ 2 + x ) from 1 to 3 = ( 3 ^ 3 - 3 ^ 2 + 3 ) - ( 1 ^ 3 - 1 ^ 2 + 1 ) = 27 - 9 + 3 - ( 1 - 1 + 1 ) = 21 - 1 = 20

*July 11, 2012*

**math**

Domain: The domain of a function is the set of all possible input values which allows the function formula to work.

*July 11, 2012*

**math**

Range: The range is the set of all possible output values , which result from using the function formula. In this case when x = 0 2 / x ^ 2 -> infinity. So domain : ( -infinity , 0 ] U [ 0 , infinity ) Or all value of x different of 0

*July 11, 2012*

**math**

1 h = 60 min 15 min = 1 / 4 h 17 / ( 1 / 4 ) = 4 * 17 = 68 km / h

*July 11, 2012*

**Trig**

sqrt ( 3 ) * csc ( 2 theta ) = - 2 Divide both sides by sqrt ( 3 ) csc ( 2 theta ) = - 2 / sqrt ( 3 ) Take the inverse cosecant of both sides. 2 theta = - pi / 3 and 2 theta = 4 pi / 3 [ Becouse csc ( pi / 3 ) = 2 / sqrt ( 3 ) , and csc ( 4 pi / 3 = 2 / sqrt ( 3 ) ] Divide ...

*July 10, 2012*

**Integrated Math 1**

- 3 x ^ 2 + 10 x - 6 = - 3 x ^ 2 - 17 x + 2 Add 3 x ^ 2 + 17 x - 2 to both sides. - 3 x ^ 2 + 3 x ^ 2 + 10 x + 17 x - 6 - 2 = - 3 x ^ 2 + 3 x ^ 2 - 17 x + 17 x + 2 - 2 27 x - 8 = 0 Add 8 to both sides. 27 x - 8 + 8 = 0 + 8 27 x = 8 Divide both sides by 27 x = 8 / 27 when x = 8...

*July 8, 2012*

**MAth**

A = 4 pi r ^ 2 A = 28.26 28.26 = 4 pi r ^ 2 28.26 / ( 4 pi ) = r ^ 2 r ^ 2 = 28.26 / ( 4 * 3.14 ) r ^ 2 = 28.26 / 12.56 = 2.25 r = sqrt ( 2.25 ) = 1.5 in Question 2 A = 4 pi r ^ 2 A = 4 * pi * 3.5 ^ 2 A = 4 * 3.14 * 12.25 A = 153.86 in ^ 2 Question 3 V = 4 * pi * r ^ 3 / 3 V...

*July 8, 2012*

**algebra**

If your expression mean: 5 * 5 - 35 + 21 - ( - 3 ) * ( - 3 ) * ( - 3 ) then: ( - 3 ) * ( - 3 ) = 9 ( - 3 ) * ( - 3 ) * ( - 3 ) = ( - 3 ) * 9 = - 27 - ( - 3 ) * ( - 3 ) * ( - 3 ) = - ( - 27 ) = 27 5 * 5 - 35 + 21 - ( - 3 ) * ( - 3 ) * ( - 3 ) = 25 - 35 + 21 + 27 = 38

*July 7, 2012*

**math**

1 hour = 60 min 1 day = 24 hours = 24 * 60 = 1440 min 1 hour 18 min = 78 min D = Day N = Night D = N + 78 D + N = 1440 min N + 78 + N = 1440 2 N + 78 = 1440 2 N = 1440 - 78 = 1362 N = 1362 / 2 = 681 min D = N + 78 = 681 + 78 = 759 min 12 * 60 = 720 759 - 720 = 39 759 min = 12 ...

*July 5, 2012*

**Math**

2 1/2 =2.5 W = 30 ft L = 2.5 * W = 2.5 * 30 = 75 ft

*July 4, 2012*

**Math**

10 / ( 1 / 5 ) = 50 50 ft / s 50 * 20 = 1,000 ft

*June 28, 2012*

**Maths - Ant Colony**

Interpolation polynomial for first set : ( x ^ 5 - 100 x ^ 4 + 4375 x ^ 3 - 65000 x ^ 2 + 827500 x + 2250000 ) / 37500 Interpolation polynomial for second set : 8 x + 400 ( x ^ 5 - 100 x ^ 4 + 4375 x ^ 3 - 65000 x ^ 2 + 827500 x + 2250000 ) / 37500 = 8 x + 400 Real solution : ...

*June 25, 2012*

**Math**

To find relative maxima and minima, first find the critical points (where f´ ( x ) is 0 or doesn´t exist). Then examine each critical point. It is a relative maximum if f´ changes from positive to negative or f" is negative. It is a relative minimum if f...

*June 24, 2012*

**Math**

To find relative maxima and minima, first find the critical points (where fŒ is 0 or doesnft exist). Then examine each critical point. It is a relative maximum if fŒ changes from positive to negative or f is negative. It is a relative ...

*June 24, 2012*

**arithmetic**

No an = 41 ( n ^ 2 + 157 n + 9442 ) / ( 39680 - 320 n )

*June 24, 2012*

**math**

2 x - 3 y = 5 2 * 3 - 3 y = 5 6 - 3 y = 5 Add - 6 to both sides 6 - 6 - 3 y = 5 - 6 - 3 y = - 1 Divide both sides by - 3 y = - 1 / - 3 y = 1 / 3

*June 18, 2012*

**math**

3 y = 9 - 2 x Divide both sides by 3 y = 9 / 3 - 2 x / 3 y = 3 - 2 x / 3 y = - ( 2 / 3 ) x + 3

*June 18, 2012*

**math**

0.68 * 8 = 5.44 0.68 in = 5 / 8 in to the nearest eight of an inch

*June 18, 2012*

**geometry**

Volume of the first cube V1 = h ^ 3 Volume of the second cube V2 = ( 5 h ) ^ 3 = 125 h ^ 3 V1 / V2 = h ^ 3 / ( 125 h ^ 3 ) = 1 / 125

*June 18, 2012*

**Algebra**

( 2 x ^ 2 - 5 x + 13 ) - 27 go on: calc101 dot com When page be open in first rectangle tape : 2x^3 - x^2 + 3x -1 In second rectangle type : x + 2 and click option : DO IT

*June 17, 2012*

**math**

a n = n ^ 3 1 ^ 3 = 1 2 ^ 3 = 8 3 ^ 3 = 27 4 ^ 3 = 64 5 ^ 3 = 125 6 ^ 3 = 216

*June 17, 2012*

**Algebra**

Go on : wolframalpha dot com If your exspression mean : (4/x)-2-(7/x^2)-4 then in rectangle type : solve (4/x)-2-(7/x^2)-4 and click option = If your exspression mean : 4/(x-2)-7/(x^2-4)=1 then in rectangle type : solve 4/(x-2)-7/(x^2-4)=1 and click option = After few secounds...

*June 14, 2012*

**Algebra II (Exponents)**

x ^ - 6 = 1 / x^ 6 third root of ( - 8 ) = - 2 ( -8 x ^ - 6 y ^ 15 ) ^ ( 1 /3 ) = third root of ( - 8 y ^ 15 / x ^ 6 ) = third root of ( - 8 ) * third root of ( x ^ 15 ) / third root of ( x ^ 6 ) = - 2 y ^ 5 / x ^ 2

*June 11, 2012*

**Algebra II (Exponents)**

( -1728 ) ^ ( 1 / 3 ) = third root of ( - 1728 ) = third root of ( - 1 ) * third root of ( 1728 ) = - 1 * 12 = - 12

*June 11, 2012*

**precalculus/trigonometry**

For x = - 2 y = ( - 2 ) ^ 2 = 4 ( x1 = - 2 , y1 = 4 ) For x = 4 y = 4 ^ 2 = 16 ( x2 = 4 , y2 = 16 ) The line through two distinct points (x1, y1) and (x2, y2) is given by y = y1 + [ ( y2 - y1 ) / ( x2 - x1 ) ] * ( x - x1 ) In your case : x1 = - 2 y1 = 4 x2 = 4 y2 = 16 y = y1...

*June 10, 2012*

**Intermediate Algebra**

A = Area L = Length W = Width A = 4 x ^ 2 + 19 x + 12 L = 4 x + 3 A = L * W W = A / L W = ( 4 x ^ 2 + 19 x + 12 ) / ( 4 x + 3 ) W = x + 4 P.S If you don't know how to divide that two exspression go on: calc101 dot com When page be open in first rectangle tape : 4 x ^ 2 + ...

*June 8, 2012*