Thursday

January 19, 2017
Total # Posts: 2,314

**math**

a = mass of one aple b = mass of basket 1 basket : 12 a + b = 3105 Subtract 12 a to both sides 12 a + b - 12 b = 3105 - 12 a b = 3105 - 12 a 2 basket : 7 a + b = 1980 7 a + 3105 - 12 a = 1980 - 5 a + 3105 = 1980 Subtract 3105 to both sides - 5 a + 3105 - 3105 = 1980 - 3105 - 5...

*October 4, 2012*

**precalc**

( a + b ) ^ 3 = a ^ 3 + 3 a ^ 2 b + 3 a b ^ 2 + b ^ 3 ( x + 2 ) ^ 3 = x ^ 3 + 3 x ^ 2 * 2 + 3 x * 2 ^ 2 + 2 ^ 3 = x ^ 3 + 3 x ^ 2 * 2 + 3 x * 4 + 8 = x ^ 3 + 6 x ^ 2 + 12 x + 8 - 3 x ^ 2 * ( x ^ 3 + 6 x ^ 2 + 12 x ) = - 3 x ^ 5 - 18 x ^ 4 - 36 x ^ 3 the degree of a polynomial...

*October 4, 2012*

**ALG2!**

- 3 k - 8 < = 5 k Subtract 5 k to both sides - 3 k - 8 - 5 k < = 5 k - 5 k - 8 k - 8 < = 0 Add 8 to both sides - 8 k - 8 + 8 < = 0 + 8 - 8 k < = 8 Divide both sides by - 8 ________________________________________ Remark : If you multiply or divide both sides of ...

*October 4, 2012*

**math**

J = Jim age C = Carol age J = 45 J = 10 + 5 C 45 = 10 + 5 C Subtract 10 to both sides 45 - 10 = 10 + 5 C - 10 35 = 5 C Divide both sides by 5 35 / 5 = C 7 = C C = 7 Carol is 7 yo Proof : 5 * 7 + 10 = 35 + 10 = 45

*October 3, 2012*

**PRECALC**

2 sin 4 x = 1 Divide both sides by 2 sin 4 x = 1 / 2 Take the inverse sine of both sides : 4 x = sin ^ - 1 ( 1 / 2 ) ________________________________________ Remark : sin ^ - 1 ( 1 / 2 ) = pi / 6 + 2 pi n OR 5 pi / 6 + 2 pi n Where n is an integer ...

*October 3, 2012*

**Algebra**

-107

*October 1, 2012*

**math**

6 d - 3 d + 2 d = 35 5 d = 35 Divide both sides by 5 d = 7

*September 26, 2012*

**Calculus**

ln ( x ^ 4 ) = 4 * ln ( x ) ln ( x ^ 2 ) = 2 * ln ( x ) ln ( x ^ 4 ) - ln ( x ^ 2 ) = 2 4 * ln ( x ) - 2 * ln ( x ) = 2 2 * ln ( x ) = 2 Divide both sides by 2 ln ( x ) = 1 Cancel logarithm by taking exp of both sidess x = e = 2.71828...

*September 24, 2012*

**Geometry**

Two Angles are Complementary if they add up to 90 ° In this case : 16 z - 9 ° + 4 z + 3 ° = 90 ° 20 z - 6 ° = 90 ° Add 6 ° to both sides 20 z - 6 ° + 6 ° = 90 ° + 6 ° 20 z = 96 ° Divide both sides by 20 z = 96 ° / 20 = 4.8 &...

*September 17, 2012*

**Algebra2**

1. 5 x - y = 10 5 x - 10 = y y = 5 x - 10 2. x ^ 2 + y ^ 2 = 4 y ^ 2 = 4 - x ^ 2 y = + OR - sqrt ( 4 - x ^ 2 )

*September 17, 2012*

**Algebra 2**

Go on : wolframalpha dot com When page be open in rectangle type : solve x-3x^1/2+2=0 an click option : = When you seeresults click option : Show steps

*September 17, 2012*

**Algebra 2**

Go on : wolframalpha dot com When page be open in rectangle type : solve 6X^(2/3)-5X^(1/3)-6=0 an click option : = When you seeresults click option : Show steps

*September 17, 2012*

**Arithmetic Progression**

Arithmetic progression : an = a1 + ( n - 1 ) * d In this case : a6 = a1 + ( 6 - 1 ) * d a6 = a1 + 5 d a4 = a1 + ( 4 - 1 ) *d a4 = a1 + 3 d a6 = ( 1 / 2 ) a4 a6 = ( 1 / 2 ) ( a1 + 3 d ) a6 = a1 / 2 + 3 d / 2 a6 = a6 a1 + 5 d = a1 / 2 + 3 d / 2 Substract 5 d to both sides a1 + 5...

*September 17, 2012*

**algebra**

2 ( 5 + k ) = 10 + 2 k

*September 17, 2012*

**Algebra**

Sorry last row : = ( 3 a ^ 2 b - 4 a b ^ 2 + 2 b ^ 4 ) / 2 a

*September 17, 2012*

**Algebra**

( 9 a ^ 3 b ^ 4 - 12 a ^ 2 b ^ 5 + 6 a b ^ 7) / ( 6 a ^ 2 b ^3 ) = 3 * a * b ^ 3 * ( 3 a ^ 2 * b - 4 a * b ^ 2 + 2 b ^ 4 ) / [ 3 * a * b ^ 3 * ( 2 a ) ] = ( 3 a ^ 2 b - 4 a b ^ 2 + 2 b ^ 4 ) / 20

*September 17, 2012*

**algebra**

4 / 5 = 0.8 square root of 1.3 = 1.140175425 4 / 5 < square root of 1.3 pie =3.14156 19 / 6 = 3.166666... pie < 19 / 6

*September 17, 2012*

**math**

h / ( 1 / k ) = ( h / 1 ) / ( 1 / k ) = h * k / ( 1 * 1 ) = h * k / 1 = h * k

*September 17, 2012*

**math**

12 / 8 = 18 / x Multiply both sides by 8 12 = 18 * 8 / x 12 = 144 / x Multiply both sides by x 12 * x = 144 Divide both sides by 12 x = 144 / 12 = 12 $

*September 14, 2012*

**Calculus**

Go on : wolframalpha dot com When page be open in rectangle type : limit (x/(1+sqrtx) - 81/10) / (x-81) as x-> 81 When you see result click option : Show steps

*September 14, 2012*

**Algebra..**

The standard form equation of a circle: ( x - h ) ^ 2 + ( y - k ) ^ 2 = r ^ 2 h are the x coordinate of the center of the circle. k are the y coordinate of the center of the circle. r = radius In this case: h = - 2 k = 0 r = 3 So equation of a circle : ( x + 2 ) ^ 2 + y ^ 2 = 9

*September 14, 2012*

**ALGEBRA**

10 x + 75 = 150 Substract 75 to both sides 10 x + 75 - 75 = 150 - 75 10 x = 75 Divide both sides by 10 x = 75 / 10 = 7.5

*September 13, 2012*

**Calc**

The limit of a quotient is the quotient of the limits. limit ( e ^ x ) / x as x -> 0 = [ limit ( e ^ x ) as x -> 0 ] / [ limit x as x -> 0 ] = 1 / 0 which is undefined. limit ( e ^ x ) / x as x -> 0 = + OR - infinity OR limit ( e ^ x ) / x as x -> 0- = - ...

*September 13, 2012*

**arithmetic**

56 + 1 / 4 = 4 * 56 / 4 + 1 / 4 = 224 + 1 / 4 = 225 / 4 liter 225 / 4 * ( 8 / 15 ) = 8 * 225 / ( 4 * 15 ) = 1800 / 60 = 30 litres

*September 13, 2012*

**algebra**

L = Length W = Width A = Area L = W + 5 A = W * L 84 = W * ( W + 5 ) 84 = W ^ 2 + 5 W W ^ 2 + 5 W = 84 Add 25 / 4 to both sides W ^ 2 + 5 W + 25 / 4 = 84 + 25 / 4 W ^ 2 + 5 W + 25 / 4 = 336 / 4 + 25 / 4 W ^ 2 + 5 W + 25 / 4 = 361 / 4 ( W + 5 / 2 ) ^ 2 = 361 / 4 ...

*September 13, 2012*

**maths**

Sorry. 10 / 0.4 = 100 / 4 = 25

*September 13, 2012*

**maths**

1 kg = 1,000 g 10 kg = 10,000 g 10,000 / 400 = 25 OR 400 g = 0.4 kg 10 / 0.4 = 100 / 40 = 25

*September 13, 2012*

**calculus maths**

log base 2 ( x ) = log ( x ) / log ( 2 ) y = ln log base 2 ( x ) = ln [ log ( x ) / log ( 2 ) ]

*September 13, 2012*

**math**

x + 6 = 18 Substract 6 to both sides x + 6 - 6 = 18 - 6 x = 12

*September 13, 2012*

**College Algebra**

The standard form equation of a circle : ( x - h ) ^ 2 + ( y - k ) ^ 2 = r ^ 2 h are the x coordinates of the center of the circle k are the y coordinates of the center of the circle r = radius In this case: x coordinate of the center = 2 y coordinate of the center = 4 r = ...

*September 13, 2012*

**Algebra**

- 25 = - 1 * 25 sqrt ( - 25 ) = sqrt ( - 1 ) * sqrt ( 25 ) = i * 5 = 5 i ________________________________________ Remark : i = sqrt ( - 1 ) = Imaginary Unit ________________________________________

*September 13, 2012*

**math**

( 3.845 * 10 ^ - 4 ) * ( 3.67 * 10 ^ 6 ) = 3.845 * 3.67 * 10 ^ - 4 * 10 ^ 6 = 14.11115 * 10 ^ 2 = 1.411115 * 10 * 10 ^ 2 = 1.411115 * 10 ^ 3 approx. 1.411 * 10 ^ 3

*September 12, 2012*

**Geometry-area**

A = d ^ 2 pi / 4 If d = 16 ft then : A = 16 ^ 2 pi / 4 = 256 pi / 4 = 64 pi ft ^ 2

*September 12, 2012*

**math - algebra 1**

(5 c - 9 ) * ( 5 c + 1 ) = 5 c * 5 c - 5 c * 9 + 1 * 5 c - 1 * 9 = 25 c ^ 2 - 45 c + 5 c - 9 = 25 c ^ 2 - 40 c - 9

*September 12, 2012*

**Limit Calculas**

Go on : wolframalpha dot com When page be open in rectangle type: limit sin(2y)/tan(5y) as y->4 and click option = When you see result click option : Show steps

*September 12, 2012*

**Pre-Cal**

The domain of a function is the set of all possible input values, which allows the function formula to work. In this case when x ^2 > 9 then x ^ 2 -9 < 0 Square root negative numbers are complex numbers. So domain of your function : x ¡ 2 > 9 x > + OR - 3 ...

*September 12, 2012*

**math**

C = 2 * r * pi 1 case : 18 * pi = 2 * r * pi Divide both sides by ( 2 * pi ) 18 * pi / ( 2 * pi ) = 2 * r * pi / ( 2 * pi ) 9 = r r = 9 cm 2 case : 16 * pi = 2 * r * pi Divide both sides by ( 2 * pi ) 16 * pi / ( 2 * pi ) = 2 * r * pi / ( 2 * pi ) 8 = r r = 8 cm 9 - 8 = 1 cm

*September 12, 2012*

**Math**

2 ( b + 1 ) < - 6 Divide both sides by 2 b + 1 < - 3 Subtract 1 to both sides b + 1 - 1 < - 3 - 1 b < - 4 Answer: a

*September 10, 2012*

**math**

yes 16 + 3 = 19 9 * 2 = 18

*September 9, 2012*

**math**

8.875 * 10 ^ - 5 = 0.00008875 If 5 / 3.65 * 10 ^ 3 mean 5 / ( 3.65 * 10 ^ 3 ) then 5 / ( 3.65 * 10 ^ 3 ) = 5 / 3.65 * 1000 ) = 5 / 3650 = 0.001369863 8.875 * 10 ^ - 5 - 5 / ( 3.65 * 10 ^ 3 ) = 0.00008875 - 0.001369863 = -0,001281113 = - 1.281113 * 10 ^ - 3

*September 9, 2012*

**math**

8.897 * 10 ^ 6 / 3.2 * 10 ^ 4 = ( 8.897 / 3.2 ) * 10 ^ 6 / 10 ^ 4 = ( 8.897 / 3.2 ) * 10 ^ 2 = 2.7803125 * 10 ^ 2

*September 9, 2012*

**math-algebra**

64 = 4 ^ 3 64 x ^ 3 = ( 4 x ) ^ 3 27 = 3 ^ 3 64 x ^ 3 - 27 = ( 4 x ) ^ 3 - 3 ^ 3 a ^ 3 - b ^ 3 = ( a - b ) ( a ^ 2 + a b + b ^ 2 ) In this case: 64 x ^ 3 - 27 = ( 4 x ) ^ 3 - 3 ^ 3 = ( 4 x - 3 ) * [ ( 4 x ) ^ 2 + 4 x * 3 + 3 ^ 2 ] = ( 4 x - 3 ) * ( 16 x ^ 2 + 12 x + 9 )

*September 9, 2012*

**algr.1**

If your expression mean : ( 1 / 4 ) n + 12 > ( 3 / 4 ) n - 4 then: ( 1 / 4 ) n + 12 > ( 3 / 4 ) n - 4 Multiply both sides by 4 4 * ( 1 / 4 ) n + 4 * 12 > 4 * ( 3 / 4 ) n - 4 * 4 n + 48 > 3 n - 16 Substrac n to both sides n + 48 - n > 3 n - 16 - n 48 > 2 n - ...

*September 9, 2012*

**math**

302.50 / 5 = 60.5

*September 9, 2012*

**algebra**

One correction in second line . P > 134 ft

*September 9, 2012*

**algebra**

W = 29 ft P = 134 ft P = 2 L + 2 W = 2 ( L + W ) P > 134 ft 2 ( L + 29 ) > 134 2 L + 58 > 134 Substract 58 to both sides 2 L + 58 - 58 > 134 - 58 2 L > 76 Divide both sides by 2 L > 38 ft

*September 9, 2012*

**Math- URGENT PLEASE**

9.3 * 10 ^ 3 = 9.3 * 1,000 = 9,300 9.3 * 10 ^ 4 = 9.3 * 10,000 = 93,000 0.011 * 10 ^ 6 = 0.011 * 1,000,000 = 11,000 9.3 * 10 ^ 3 + 9.3 * 10 ^ 4 + 0.011 * 10 ^ 6 = 9,300 + 93,000 + 11,000 = 113,300 = 1.133 * 10 ^ 5

*September 9, 2012*

**Trigonometry**

First answer is wrong.

*September 8, 2012*

**Trigonometry**

•Trigonometry - Bosnian, Sunday, September 9, 2012 at 1:07am Area of right triangle = 1 / 2 Area of a rectangle In this case: A1 = ( 1 / 2 ) * 8 * 15 = 60 units When each side is doubled: A2 = ( 1 / 2 ) * 2 * 8 * 2 * 15 = 4 * ( 1 / 2 ) * 8 * 15 = 4 A1 A2 = 4 * 60 = 240 ...

*September 8, 2012*

**Trigonometry**

Area of right triangle = 1 / 2 Area of a rectangle In this case: A1 = ( 1 / 2 ) * 8 * 15 = 20 units When each side is doubled: A2 = ( 1 / 2 ) * 2 * 8 * 2 * 15 = 4 * ( 1 / 2 ) * 8 * 15 = 4 A1 A2 = 4 * 20 = 80 units

*September 8, 2012*

**Trigonometry**

sin theta = H / L = H / 5 H = 5 * sin theta = 5 * sin 50 ° 32 ´ H = 5 * 0.77199 H = 3.85995 m approx. H = 3.86 m

*September 8, 2012*

**Trigonometry**

The rule of Pythagoras: c ^ 2 = a ^ 12 + b ^ 2 In this case : c = 34 cm b = a + 14 c = a ^ 2 + ( a + 14 ) ^ 2 34 ^ 2 = a ^ 2 + ( a + 14 ) ^ 2 1156 = a ^ 2 + a ^ 2 + 2 * a * 14 + 14 ^ 2 1156 = 2 a ^ 2 + 28 a + 196 Subtract 196 to both sides 1156 - 196 = 2 a ^ 2 + 28 a + 196 - ...

*September 8, 2012*

**Precalculus**

an = n ^ 2 + 1 n = 1 a1 = 1 ^ 2 + 1 = 1 + 1 = 2 n = 2 a2 = 2 ^ 2 + 1 = 4 + 1 = 5 n = 3 a3 = 3 ^ 2 + 1 = 9 + 1 = 10 n = 4 a4 = 4 ^ 2 + 1 = 16 + 1 = 17

*September 8, 2012*

**Cal-Help Please**

When x = 9 9 x − x ^ 2 = 9 * 9 - 9 ^ 2 = 81 - 81 = 0 and 3 - sqt( x ) / ( 9 x − x ^ 2 ) = 3 - sqt( 9 ) / ( 9 x − x ^ 2 ) = 3 - 3 / 0 = 3 - ( + OR - infinity ) So: limit 3 − square root( x ) /(9 x − x ^ 2 ) as x ->9 = + OR - infinity

*September 8, 2012*

**geometry**

Two Angles are complementary if they add up to 90 ° (a Right Angle). Or : A + B = 90 ° In this case : A = 16 z - 9 ° B = 4 z + 3 ° A + B = 90 ° 16 z - 9 ° + 4 z + 3 ° = 90 ° 20 z - 6 ° = 90 ° Add 6 ° to both sides 20 z - 6 ° + 6...

*September 8, 2012*

**Math**

3 x + 2 y = 3 subtract 3 x to both sides 3 x - 3 x + 2 y = 3 - 3 x 2 y = 3 - 3 x Divide both sides by 2 y = 3 / 2 - 3 x / 2 2 x + 10 y = - 5 Subtract 2 x to both sides 2 x - 2 x + 10 y = - 5 - 2 x 10 y = - 5 - 2 x Divide both sides by 10 y = - 5 / 10 - 2 x / 10 y = y 3 / 2 - 3...

*September 8, 2012*

**Algebra....HELP!!**

7 a + 6 b = 3 + -7 a + b = 25 ________________ 7 a + ( - 7 a ) + 6 b + b = 3 + 25 7 b = 28 Divide both sides by 7 7 b / 7 = 28 / 7 b = 4 7 a + 6 b = 3 7 a + 6 * 4 = 3 7 a + 24 = 3 Subtract 24 to both sides 7 a + 24 - 24 = 3 - 24 7 a = - 21 Divide both sides by 7 7 a / 7 = - ...

*September 7, 2012*

**Math**

If your expresion mean : ( - 4 ) * ( - x ) ^ 3 * x * ( - 1 / 8 ) then : ( - 4 ) * ( - x ) ^ 3 * x * ( - 1 / 8 ) = - 4 * ( - 1 / 8 ) * ( - x ^ 4 ) = ( 1 / 2 ) * ( - x ^ 4 ) = - x ^ 4 / 2

*September 6, 2012*

**math**

If your expression mean : [ ( 2 ^ 5 - 5 ) / 9 ] * 11 then : 2 ^ 5 = 2 * 2 * 2 * 2 * 2 = 32 2 ^ 5 - 5 = 32 - 5 = 27 ( 2 ^ 5 - 5 ) / 9 = 27 / 9 = 3 [ ( 2 ^ 5 - 5 ) / 9 ] * 11 = 3 * 11 = 33

*September 5, 2012*

**calculus**

5 = 1 + 4 6 = 2 + 4 7 = 3 + 4 ... 14 = 10 + 4 5 ^ 2 + 6 ^ 2 + 7 ^ 2 + ... + 14 ^ 2 = ( 1 + 4 ) ^ 2 + ( 2 + 4 ) ^ 2 + ( 3 + 4 ) ^ 2 + ... + ( 10 + 4 )^ 2 = E ( k + 4 ) ^ 2 from n = 1 to n = 10 ________________________________________ ( k + 4 ) ^ 2 = k ^ + 2 * k * 4 + 4 ^ 2 = k...

*September 5, 2012*

**Math**

x ^ 2 + y ^ 2 + 6 x - 46 = 0 x ^ 2 + y ^ 2 + 6 x = 46 ( x ^ 2 + 6 x + 9 ) + y ^ 2 = 46 + 9 ( x + 3 ) ^ 2 + y ^ 2 = 55 The circle equation is: (x - a ) ^ 2 + ( y - b ) ^ 2 = r ^ 2 where a and b are the x and y coordinates of the center of the circle. In this case : a = - 3 ...

*September 4, 2012*

**calculus**

Where is your graph?

*September 1, 2012*

**math**

If log 7 mean logarithm to base b = 7 then : log 7 ( x ) = log 7 ( 4 ) + log 7 ( 3 ) log ( a ) + log ( b ) = log ( a * b ) log 7 ( 4 ) + log 7 ( 3 ) = log 7 ( 4 * 3 ) = log 7 ( 12 ) log 7 ( x ) = log 7 ( 12 ) x = 12

*September 1, 2012*

**Math**

A = sqrt [ s * ( s - a ) * ( s - b ) * ( s - c ) ]

*August 31, 2012*

**Math**

The semiperimeter of a triangle is half its perimeter. The formula for the semiperimeter of a triangle with side lengths a, b, and c is: s = ( a + b + c ) / 2 The area of a triangle can also be calculated from its semiperimeter using Heron's formula: A = [ sqrt s * ( s - a...

*August 31, 2012*

**Pre-algebra**

2 + 0.35 * 12 = 2 + 4.2 = 6.2

*August 31, 2012*

**MATH**

16 - 30 / ( 10 + 5 ) = 16 - 30 / 15 = 16 - 2 = 14

*August 27, 2012*

**geometry**

180 ° - x = 3 * ( 90 ° - x ) - 60 ° 180 ° - x = 270 ° - 3 x - 60 ° 180 ° - x = 210 ° - 3 x - x + 3 x = 210 ° - 180 ° 2 x = 30 ° Divide both sides by 2 x = 15 °

*August 25, 2012*

**math**

16 ^ 2 = 256 25 / 5 = 5 If 6(3)4 mean 6 * 3 * 4 then . 16^2-25/5+6(3)4= 256 - 5 + 72 = 323

*August 25, 2012*

**math**

Go on: wolframalpha dot com When page be open in rectangle type: derivative ln(cos(0.5)+(sin(x^2+3))^1/3) and click option = After few seconds when you see result click option: Show steps On wolfram alpha dot com you can practice any kind of calculus. That is good just for ...

*August 25, 2012*

**Algebra**

When p = 0 1 / p -> Infinity One solution also p < 0 becouse when p < 0 then 1 / 6 p are negative and 1 / 6 p + 14 < 20 So the exact solutions are : p < 0 and p > 1 / 36

*August 24, 2012*

**Algebra**

1 / ( 6 p ) + 14 < 20 Subtract 14 to both sides 1 / ( 6 p ) + 14 - 14 < 20 - 14 1 / ( 6 p ) < 6 Multiply both sides by 6p 6 p * 1 / ( 6 p ) < 6 p * 6 1 < 36 p Divide both sides by 36 1 /36 < 36 p / 36 1 / 36 < p that is equivalent of p > 1 / 36

*August 24, 2012*

**math**

P = 2 a + 2 b In your case : a = x , b = 2 x + 3 P = 2 a + 2 b = 72 P = 2 x + 2 * ( 2 x + 3 ) = 72 2 x + 4 x + 6 = 72 6x + 6 = 72 Subtract 6 to both sides 6 x + 6 - 6 = 72 - 6 6 x = 66 Divide both sides by 6 x =11 x = a = 11 cm b = 2 x + 3 b = 2 * 11 + 3 = 22 + 3 = 25 cm P = 2...

*August 24, 2012*

**Algebra**

1 p = p 1 p + 14 < 20 p + 14 < 20 Subtracrt 14 to both sides p + 14 - 14 < 20 - 14 p < 6

*August 24, 2012*

**math**

n = your number a = ones digit b = tenths digin c = hundreds digit d = thousands digit n = a + b / 10 + c / 100 + d / 1000 c = d + 3 b = c - 2 = d + 3 - 2 = d + 1 a = b + c = d + 1 + d + 3 = 2 d + 4 n = a + b / 10 + c / 100 + d / 1000 n = 2 d + 4 + ( d + 1 ) / 10 + ( d + 3...

*August 23, 2012*

**Algebra**

h = the height of the flagpole s = the height of the school h = ( 3 / 4 ) s s - h = 4.5 m s - ( 3 / 4 ) s = 4.5 ( 1 / 4 ) s = 4.5 Multiply both sides by 4 s = 18 The height of the school = 18 m

*August 23, 2012*

**math**

Take number 12 and subtract summ of first numbers 2 * 6 = 4 become 12 - ( 2 + 6 ) = 12 - 8 = 4 4 * 1 = 7 become 12 - ( 4 + 1 ) = 12 - 5 = 7 8 * 3 = 1 become 12 - ( 8 + 3 ) = 12 - 11 = 1 So 5 * 5 = x become 12 - ( 5 + 5 ) = 12 - 10 = 2 x = 2 5 * 5 = 2

*August 20, 2012*

**Math**

x = first number y = second number x - y = 16 that is equivalent of y = x - 16 x ^ 2 + y ^ 2 = x ^ 2 + ( x - 16 ) ^ 2 = x ^ 2 + x ^ 2 - 2 * x * 16 + 16 ^ 2 = 2 x ^ 2 - 32 x + 256 Quadratic equation a x ^ 2 + b x + c vhen a is positive in point : x = - b / 2 a have MINIMUM x...

*August 20, 2012*

**Algebra**

1.5 * 17.5 = 26.25 miles

*August 17, 2012*

**Algebra2**

1. Eliminate the absoulute value : x ^ 2 - 3 x + 3 = 3 x ^ 2 - 3 x + 3 = - 3 ______________________ x ^ 2 - 3 x + 3 = 3 Subtract 3 to both sides x ^ 2 - 3 x + 3 - 3 = 3 - 3 x ^ 2 - 3 x = 0 x ( x - 3 ) = 0 Solutions : x = 0 and x = 3 x ^ 2 - 3 x + 3 = - 3 Add 3 to both sides x...

*August 17, 2012*

**Algebra2**

1. Eliminate the absoulute value : 7 x + 2 = 10 7 x + 2 = - 10 _________________ 7 x + 2 = 10 7 x = 10 - 2 = 8 x = 8 / 7 7 x + 2 = - 10 7 x = - 10 - 2 = - 12 x = - 12 / 7 Solutions x = 8 / 7 aprox. 1.14 and x = - 12 / 7 aprox. - 1.71 2.Eliminate the absoulute value : Absolute ...

*August 16, 2012*

**algebra 2**

x + y = 2 Multiply both sides by 2 2 x + 2 y = 4 2 y = 4 - 2 x 3 x + 2 y = 9 3 x + 4 - 2 x = 9 x + 4 = 9 x = 9 - 4 = 5 x + y = 2 5 + y = 2 y = 2 - 5 = - 3

*August 16, 2012*

**math**

á = Greek letter alpha â = Greek letter beta

*August 16, 2012*

**math**

One of the most important properties of a straight line is in how it angles away from the horizontal. This concept is reflected in something called the "slope" of the line For straight lines, slope is constant (always the same). You can graph the points and "...

*August 16, 2012*

**math**

d = your digit d = 100 x + 10 y + z my hundreds digit is three more than my ones x = z + 3 that is equivalent with : z = x - 3 my tens digit is oneless than my hundreds y = x - 1 d = 100 x + 10 y + z d = 100 * x + 10 * ( x - 1 ) + x - 3 d = 100 x + 10 x - 10 + x - 3 = 111 x - ...

*August 16, 2012*

**Algebra**

If your expression mean : f ( x ) = 7 / ( x - 1 ) then : x = 0 f ( 0 ) = 7 / ( 0 - 1 ) = 7 / - 1 = - 7 x = 1 f ( 1 ) = 7 / 1 - 1 ) = 7 / 0 = infinity x = 2 f ( 2 ) = 7 / ( 2 - 1 ) = 7 / 1 = 7 x = 3 f ( 3 ) = 7 / ( 3 - 1 ) = 7 / 2 = 3.5 x = 4 f ( 4 ) = 7 / ( 4 - 1 ) = 7 / 3 = 2...

*August 16, 2012*

**Math**

Arithmetic mean : ( p1 + p2 + p3 + p4 + p5 ) / 5 = 21 Multiply both sides by 5 p1 + p2 + p3 + p4 + p5 = 21 * 5 = 105 p1 + p2 + p3 + p4 + p5 = Total points of team Total points of team = 105 If 4 other players obtained 1 point greatest score of one player could be : 105 - 4 = 101

*August 15, 2012*

**algebra 1**

3 ( 5 y - 5 x ) = 45 3 * 5 * ( y - x ) = 3 * 3 * 5 15 ( y - x ) = 3 * 15 Divide both sides by 15 y - x = 3 Add x to both sides y - x + x = 3 + x y = x + 3 If you must solve y = 0 0 = x + 3 Subtrac 3 to both sides 0 - 3 = x + 3 - 3 - 3 = x x = - 3 OR 3 ( 5 y - 5 x ) = 45 Divide...

*August 14, 2012*

**Algebra 1**

P = Perimeter W = Width L = Length P = 2 W + 2 L 36 = 2 * 4 + 2 L 36 = 8 + 2 L Subtract 8 to both sides 36 - 8 = 8 + 2 L - 8 28 = 2 L Divide both sides by 2 28 / 2 = 2 L / 2 14 = L L = 14 in

*August 12, 2012*

**algebra**

Vr = Vm * ( 1 - r ^ 2 / R ^ 2 ) Vr = ( 1 / 4 ) Vm ( 1 - r ^ 2 / R ^ 2 ) = 1 / 4 Multiply both sides by 4 4 * ( 1 - r ^ 2 / R ^ 2 )= 1 4 - 4 * r ^ 2 / R ^ 2 = 1 Subtract 4 to both sides 4 - 4 * r ^ 2 / R ^ 2 - 4 = 1 - 4 - 4 * r ^ 2 / R ^ 2 = - 3 Multiply both sides by - 1 4 * r...

*August 11, 2012*

**trig**

start-> programs-> Accessories-> Calculator-> View-> Scintific 17 sin

*August 9, 2012*

**math**

10 ^ 6 = 10 * 10 * 10 * 10 * 10 * 10 = 1 000 000 = one milion 4.97 * 10 ^ 6 = 4 970 000

*August 9, 2012*

**Algebra**

1,760 / 0.04 = 44,000 $

*August 5, 2012*

**Algebra 1**

d = r t 48 = r * 16 Divide both sides by 16 48 / 16 = r * 16 / 16 3 = r r = 3

*August 5, 2012*

**Algebra**

- 2 ( t - 7 ) - ( t + 8 ) = 8 - 2 * t - 2 * ( - 7 ) - t - 8 = 8 - 2 t + 14 - t - 8 = 8 - 3 t + 6 = 8 Subtrac 6 to both sides - 3 t + 6 - 6 = 8 - 6 - 3 t = 2 divide both sides by - 3 t = - 2 / 3

*August 5, 2012*

**algebra**

a + 7b = 17 - a + 2b = 2 __________ ( a - a ) + ( 7b - 2b ) = 17 - 2 5b = 15 Divide both sides by 5 b = 15 / 5 = 3 a + 7b = 17 a + 7 * 3 = 17 a + 21 = 17 Subtract 21 to both sides a + 21 - 21 = 17 - 21 a = - 4

*August 5, 2012*

**mathematics**

In point where firs derivative = 0 function have loca minimum or maximum. If second derivative < 0 that is local maxsimum. If second derivative > 0 that is local minimum. If expression 3cos2x mean : 3 cos (2 x ) then first derivative = - 6 sin ( 2 x ) - 6 sin( 2 x ) = 0 ...

*August 4, 2012*

**math**

x + 3 y = 7 Subtract 3 y to both sides x + 3 y - 3 y = 7 - 3 y x = 7 - 3 y Put x = 7 - 3 y into equation x + 4 y = 12 7 - 3 y + 4 y = 12 7 + y = 12 Subtract 7 to both sides 7 + y - 7 = 12 - 7 y = 5 Replacing y = 5 into x = 7 - 3 y gives x = 7 - 3 * 5 x = 7 - 15 x = - 8

*August 4, 2012*

**math**

Set of known values: x = 1 , y = 280 x = 2 , y = 480 x = 3 , y = 684 x = 4 , y = 913 x = 5 , y = 1205 x = 6 , y = 1615 The interpolating polynomial is : y = ( 17 x ^ 4 - 86 x ^ 3 + 139 x ^ 2 + 4730 x + 1920 ) / 24 For x = 7 , y = 2215 Next term : 2215

*August 3, 2012*