# Homework Help: Math: Trigonometry

## Recent Homework Questions About Trigonometry

**Precalculus/Trig 6**

Find the exact value of the following trigonometric functions: sin(13pi), cos(14pi), tan(15pi)

**Precalculus/Trig 5**

Find the exact value of thet following trigonometric functions: tan(5pi/6) tan(7pi/6) tan(11pi/6)

**Precalculus/Trig 3**

The degree measure of an angle theta is 40 degrees. What is the radian Measure of theta? at what point P does the terminal ray intersect the unit circle (what is the ordered paid P(____, ___)?

**trig**

weather balloon is directly west of two observing stations that are 10 mi apart. The angles of elevation of the balloon from the two stations are 17.6 degrees and 78.2 degrees. How high is the balloon?

**Precalc/Trig 2**

The point P lies in the 4th quadrant and is located on a circle of radius 2. Find the missing coordinate for P. (___, (negative square root of 3)).

**Precalc/Trig 1**

What equation would you use to show that the point ((square root of 11)/(6), (5/6))is on the unit circle?

**trig**

two intersecting sides are 250ft and 170ft, angle between is 55 degrees. use the 250ft side as the base, what is the height of the triangle

**trig**

tan^2theta+6=sec^2theta+5

**TRIG**

find the degree measure of a central angle subtended by an arc of 8.00cm in a circle with circumference 20.0cm

**trig**

a plane flying 33,000 ft is 130 miles from the airport when it begins to descend if the angle of descent is constant find this angle

**Math, Trig**

The high level bridge, a railway bridge that crosses the Oldman River is over 1km long. From one point on the river, the angle of elevation of the top of the bridge is 62.6 degrees. From a point 20m closer to the bridge, the angle of elevation of the top of the bridge is 72.8 ...

**trig**

i have to draw a flat unit circle all the way to 4 pi in radians. i can get to 2 pi but i have trouble finding the radians if i went one more time around the unit circle.

**Math/Trig**

An airplane leaves an airport and flies due west 150 miles and then 170 miles in the direction 210°50'. Assuming the Earth is flat, how far is the plane from the airport at this time (to the nearest mile)

**Precalc/Trig**

wave is modeled by the function ... h(t) = 3cos(p/10)*t What is the period of the wave (T) *frequency (F) is defined as the number of cycles of the motion per second. What is the relationship between F and T? Find the wave height (H) which is the vertical distance between the ...

**Trig**

A ladder is resting against a wall. The ladder and the ground and angle of 40 degrees and the ladder is 4 ft. from the wall. How long is the ladder?

**Trig**

A sprinkler on a golf green is set to spray water over a distance of 20 meters and to rotate through an angle of 160°. Find the area of the region that can be irrigated with the sprinkler. (Round your answer to two decimal places.) I really have no idea how to go about this ...

**Trig**

Two ships leave the same port at 7.am. The first ship sails towards europe on a 54 degree course at a constant rate of 36 mi/h. The second ship,neither a tropical destination, sails on a 144 degree course at a constant speed of 42 mi/h. Find the distance between the ships at ...

**trig**

A boat is 23 mi due west of lighthouse A. Lighthouse B is 14 mi due north of lighthousenA. Find the bearing of lighthouse B from the boat and the distance from lighthousenB tho the boat.

**trig**

A boat is 23 mi due west of lighthouse A. Lighthouse B is 14 mi due north of lighthousenA. Find the bearing of lighthouse B from the boat and the distance from lighthousenB tho the boat.

**Trig**

A cylindrical tank, 6 foot in radius, lies on it's side parallel and against the side of a warehouse. A ladder leans against the building, passes over and just touches the tank, and has a slope of -3/4. Find the equation of the ladder and the length of the ladder

**trig**

A woman that is 5'4" stands 15 ft from a streetlight and casts a four-foot long shadow. Determine the height of the streetlight and the degree measure of the angle of elevation form the tip of her shadow to the top of the streetlight, both accurate to two decimal places.

**Trig**

A 16 - foot ladder leaning against the side of a house reaches 12 feet up the side of the house. What angle does the ladder make with the ground

**TRIG**

A circular power saw has an 8-1/2 inch diameter blade that rotates at 4400 revolutions per minute. a)Find the angular speed of the saw blade in radians per minute. b)Find the linear speed in feet per minute of one of the 24 cutting teeth as they contact the wood being cut. I'd...

**math/trig**

A flagpole casts a shadow 44 ft with the sun angle of elevation is 60.5 degrees. Find the height of the flagpole and at what angle is the shadow twice as long?

**math/trig**

A 16 ft ladder casts a shadow 44 ft with the sun angle of elevation is 60.5 degrees. Find the height of the flagpole and at what angle is the shadow twice as long?

**trig**

(a) sketch an angle A in standard position whose terminal ray passses through the point (1,-4) (b) Find the exact value of the six trigonometric functions of A, (c) Let B be the reference angle of A. Find a point on the terminal rsy of B in standard position and add B to your ...

**trig**

find the reference angle of -20000 and express the six trigonometric functions of -20000 in terms of the six trigonometric functions of its reference angle.

**trig**

my question is find all angles of theta and 2pi whose reference angle is alpha = pi/12. Give exact answers. i cannot for the live of me find this

**Algebra 2/Trig**

A 5'6" person is standing near a light post that is 18' above the ground. How long is the man's shadow when he is 5' from the base of the light post?

**math trig**

lets say you have a tree or a flagpole. Describe how you would measure this object using right angled triganometry

**trig**

what is the value of sin 70

**trig**

how to prove ; tan 10 degrees + tan 70 degrees - tan 50 degrees = sqrt 3

**trig**

prove that there exists no smallest possitive real number dose there exist a smallest positive rational number given a real number x, does there exist a smallest real y>x?

**Math (Trig/pre-calculus)**

some stars are so far away that their position appear fixed as earth orbits the sun. other stars, however, appear over time to shift their positions relative to the background of "fixed" stars. suppose that the star shown below appears to shift through an arc of theta = 0 ...

**trig**

Imagine that you are sitting 6 feet away from a television that is hung on a wall. The top of the TV is 8 feet off the ground. Which function correctly represents the angle that you make with the top of your television?

**trig**

Let be an angle in standard position and the point (a, b) be the point of intersection of the terminal side of with the unit circle. State the unit circle definitions of the six trigonometric functions. cos = sec = sin = csc = tan = cot =

**trig**

find the exact value of the expression , sin-1(-0.5)

**trig**

Construct the equations of the following trigonometric functions: A)A sine function with amplitude 2, period , phase shift /3 right B)A tangent function with a reflection in the y-axis, period ¾, translation up 5 units C)A cosine function with period 270°, translation down ...

**trig**

For the function -2sin(x-(pi/3)) between x = 0 and x = 2 : (6 marks) For what value(s) of x does y have its maximum value? For what value(s) of x does y have its minimum value? For what value(s) of x does y=1?

**trig**

Determine the period, amplitude and phase shift for each given function: A)y = -4 cos 3x + 5 B)y = 2/3 sin (30x-90degrees)-10 c)y = -0.38 tan (x/3+pi/3) d)y = pi cos(2x)+ pi

**trig**

Please help to find the value of: Sin 17 degree.

**trig**

(sec 8 x - 1)/(sec 4x -1) = tan 8x/tan 4x Prove it!

**algebra/trig**

1. which number below is irrational? a)√4/9 b) √20 c)√121 Why is the number you chose irrational? 2. express in simplest form: √48-5√27+2√75 3. solve for x: (√x+2)-3=0

**algebra/trig**

1. f(x)=x^3+5 does f(x) have an inverse? if so, find the inverse and decide if it is a function. 2. if f(x)= 3x+1 and g(x)= x^2-1, find (f∙ g)(2) 3. if f(x)= (2x)^2, find f(-4) thank you :)

**Calculus 1 Integration Trig Inverse**

integral of (4/(x times the square root of (x^2-1)) + (1+x+x^3)/(1+x^2)dx

**Caculus:Integration Inverse Trig**

integral of (4/(x times the square root of( x^2-1)) + (1+x+x^3)/(1+x^2)dx

**trig**

find sin theta and tan theta if cos theta = 2/3 and cot theta is >0 and find cos theta and cot theta if sin theta = 1/3 and tan theta is <0 thanks! :)

**Trig Functions**

Which of the following lists contains only functions with vertical asymptotes in their graphs? A. Cosine, sine, tangent, cotangent B. Tangent, secant, cosecant, cotangent C. Sine, tangent, secant, cosecant D. Cosine, sine, secant, cosecant

**Radicals and Trig.**

I am catching up over summer on math units that I have to rewrite. In my textbook it asks me to find the base of two triangles and add them together. the smallest angle of the larger triangle is 30 degrees. The opposite side to the angle is 40cm. it gives me Tan 30 = 40/x 1/...

**Trig**

Claim: For all theta such that -pie/2<theta<pie/2 the following holds true: (1+tan(theta))^2=1/cos(theta)

**Trig**

There is an airplane at an altitude of 12000 ft. The angle of depression is 1 degree. How far on the ground is the plane.

**Trig**

verify the following identity: 2sinxcos^3x+2sin^3cosx=sin(2x)

**Trig**

verify the following identity: tanx+cotx/cscx=secx

**Trig**

verify the following identity: cos(A-B)/cosAsinB=tanA+cotB

**Trig**

verify the following identity: sin(x+y)*sin(x-y)=sin^2x-sin^2y

**Trig**

Verify the following identity: 1-cosx/sinx=sinx/1+cosx

**Trig/Physics**

Joe walks 5 miles in the direction degrees North of East, and then 10 miles in the direction 20 degrees West of North. (a) How far is Joe from his starting position? (b) In what direction is Joe from his starting position?

**Trigonometry**

Simplify the expression using trig identities: 1. (sin4x - cos4x)/(sin2x -cos2x) 2. (sinx(cotx)+cosx)/(2cotx)

**Math Trig**

13. What is the equation of a cosine function with amplitude 3, transition point (−1, 1), and period p? A. y = p cos [3(x − 1)] − 1 B. y = 3 cos [2(x − 1)] + 1 C. y = 3 cos [p (x + 1)] − 1 D. y = 3 cos [2(x + 1)] + 1 16. What is the transition ...

**trig**

establish identity 5csc^2theta-3cot^2theta=2csc^2theta+3

**trig**

Solve the equation on the interval [0,360) cos^2t+2cos(t)+1=0

**trig**

Find all solutions in the interval [0,360) sin(4t)=ã3/2

**TRIG**

A WORKER PRESENT SALARY IS 24 PER ANNUM HIS ANUAL INCREMENT IS 10% OF HIS BASIC SALARY WAT WUD BE HIS ANNUAL SALARY AT THE BEGINNIN OF THE THIRD YEAR

**TRIG**

Given that tan¤=3/4 and ¤ is in the second quadrant find sin2¤ (¤=theta)

**TRIG**

Given that tan¤=3/4 and ¤ is in the second quadrant find sin2¤ (¤=theta)

**trig**

determine the amplitude,period and phase shift of y=-2cos(pix-3)

**Airplane trig question**

An airplane, flying at a speed of 420 miles per hour, flies from point A in the direction 131 degrees for 90 min. and then flies in the direction 41 degrees for 30 min. in what direction does the plane need to fly in order to get back to point A?

**Trig**

find all solutions to the equation √3 csc(2theta)=-2 Would the answer be π/6 + 2πn, 5π/6 +2πn or π/6 + πn, 5π/6 +πn? or neither?

**trig**

sin t /1-cos t - 1+ cos t/sin t= 0

**trig**

Prove sin 1 cos 1 cos sin 0 1. Show each step of your proof. 2. Provide written justification for each step of your proof. C. If you use sources, include all in-text citations and references in

**Trig**

Given y=2-4cos(3x-pi/4), find each of the following, giving the general representation of the location of all minimums. Also provide the graph of two full cycles, labeling everything. Domain = Range = Amplitude = Period = Ph. Shft. = Interval for one Complete cycle = ...

**Trig/Precal**

An airplane flies on a compass heading of 90° at 310 mph. The wind affecting the plane is blowing from 332° at 40 mph. What is the true course and ground speed of the airplane?

**Alg/Trig**

Write an equation of a circle with center (2, 3) and radius 4.5.

**trig HELP**

A barn is 30ft. wide by 60ft long; the rafters make an angle of 40degrees with the horizontal. Find the area of each of the two gable ends and the area of the roof. Please Include Solution And If Possible An Illustration. Thank You In Advance :)

**Algebra & Trig**

at a throwing speed pf 12.2 meters per seconds,what is the angle that produce a distance of 13 meters

**Algebra & Trig**

calculate the velocity of 10 meters per second with an angle of 30 degrees

**trig**

determine the period of y = tan 2x

**trig**

Find the radius of a circle which a 59-foot chord subtends an angle of 12degrees at the center. I Just Want To See The Illustration. I Can Handle The Rest. Thank You In Advance =)

**trig**

using a right triangle with one angle 24 degrees and the opposite side being 57 feet, write an expression to fine the hypotenuse, X? X=57/sin(24) is this correct?

**trig**

a circular chimney pipe with an 8-inch diameter passes vertically from a heater through a metal plate in the roof. the plate has an elliptical hole that measures 8 inches along one axis. if the roof is slanted at an angel of 40 degrees with the horizontal, what is the length ...

**trig**

If tan A = 2 and A belongs to [pie,3pie/2] then the expression cos A divided by sin cubed A +cos cubed A is equal to what?

**trig**

the horizontal speed of an airplane is 173 miles per hour. the magnitude of the planes velocity is 200 miles per hour. what angle is the plane climbing? My answer is Cos-1 173/200. is this correct

**trig**

A certain species of tree grows an average of 0.5 cm per week. Write an equation for the sequence that represents the weekly height of this tree in centimeters if the measurements begin when the tree is 800 centimeters tall?

**trig**

sec8A-1/sec4A-1=tan8A/tan2A

**Trig**

From a point P on level ground, the angle of elevation of the top of a tower is 27°10'. From a point 23.0 meters closer to the tower and on the same line with P and the base of the tower, the angle of elevation of the top is 51°30'. Approximate the height of the tower. (...

**trig**

explain how you will find the coordinate of P(14pi/3) if you knew the coordinate of P(pi/3)

**trig**

given cot-A square root of 5, find cot-B at the 4th quadrant.

**Trig**

Sketch the graph through at least one complete cycle. Label the axes on the coordinate plane. Use your graph to predict the height of point P above the surface of the water when the stopwatch shows 7 seconds. Round to the nearest tenth of a foot. (Enter only the number.)

**Trig**

P was at its maximum after 5 seconds. Use this information to write the value of the last constant, h. (If the value is a fraction, use a slash to separate the numerator from the denominator without spaces, such as 3/4.)

**Trig**

Since the center is 6 feet above the water, the horizontal line of symmetry of the sine curve will be 6 units above the x-axis. This information helps you find the value of vertical shift. Write its value.

**Trig**

Jessica attains a height of 4.7 feet above the launch and landing ramps after 1 second. Her initial velocity is 25 feet per second. To find the angle of her launch, which equation can you use with the given information to solve for θ? (Answer: 1 or 2). Use the equation ...

**trig**

A guy wire runs from the ground to a cell tower. The wire is attached to the cell tower 150 feet above the ground. The angle formed between the wire and the ground is 40° (see figure). (Round your answers to one decimal place.)

**trig**

Two forces of 5 lb. and 14 lb. act on a body at right angles to each other. Find the angle their resultant force makes with the force of 14 lb

**trig**

A roadway rises 55ft in horizontal distance of 1/2 mile (1mile=5280ft) Find the tangent of the angle that it makes with the horizontal.

**trig**

Give the component form of the resultant vector in the following. NOTE: Answer must be typed in using the following format -- including the parentheses: (#,#). u =(10, 5) -3u=

**trig**

A pendulum is 18 feet long. Its central angle is 44º. The pendulum makes one back and forth swing every 12 seconds. Each minute, the pendulum swings _____ feet. (Answer to the nearest foot.)

**trig**

Use a table of trigonometric values to find the angle è in the right triangle in the following problem. Round to the nearest degree, if necessary. cos è =0.9659 A=? H=20

**Trig**

Find sin2theta, cos2theta if csctheta=13/12 and lies in quadrant II. Thank you!

**Trig**

The length of the base of an isosceles triangle is one fourth the length of one of its legs. If the perimeter of the triangle is 16 inches, what is the length of the base?

**trig/math**

Determine the period, amplitude and phase shift for each given function: A)y = -4 cos 3x + 5 B)y = 2/3 sin (30x-90)-10 c)y = -0.38 tan (x/3+pi/3) d)y = pi cos(2x)+ pi