Friday

September 4, 2015
**calculus**

Let f(x) = x ^3. The equation of the tangent line to f(x) at x = 3 is y= ?. Using this, we find our approximation for 2.7 ^3 is
*Friday, October 31, 2014 by Alessandra Romano*

**Calculus**

Using an appropriate linear approximation approximate 26.9^(4/3).
*Friday, October 31, 2014 by Alex*

**Calculus**

Let f(x) = \sqrt[3] x. The equation of the tangent line to f(x) at x = 125 is y = Using this, we find our approximation for \sqrt[3] {125.4} is =
*Friday, October 31, 2014 by Alessandra Romano*

**calculus please help asap**

true or false questions: a)The derivatives of the reciprocal trigonometric functions can be found using the chain rule and their related base functions. b) A sinusoidal function can be differentiated only if the independent variable is measured in radians. c) There are an ...
*Friday, October 31, 2014 by Tina*

**calculus**

The linear approximation at x = 0 to f(x) = \sin (5 x) is y =
*Friday, October 31, 2014 by Alessandra Romano*

**calculus**

The linear approximation at x = 0 to f(x) = \sqrt { 5 + 4 x } is y =
*Friday, October 31, 2014 by Alessandra Romano*

**Calculus**

Let f(x) = \sqrt[3] x. The equation of the tangent line to f(x) at x = 125 is y = . Using this, we find our approximation for \sqrt[3] {125.4} is
*Friday, October 31, 2014 by Alessandra Romano*

**Calculus**

The equation of the tangent line to f(x) = \sqrt{x} at x = 64 is y =
*Friday, October 31, 2014 by Alessandra Romano*

**Calculus**

let y=2x^2 +5x+3 Find the differential dy when x= 5 and dx = 0.1 Find the differential dy when x= 5 and dx = 0.2
*Friday, October 31, 2014 by alessandra*

**Calculus**

Find the slope of the tangent line to the graph of the given function at the given value of x. y=-5x^1/2+x^3/2; x=25
*Friday, October 31, 2014 by Duane*

**Calculus**

Find the slope and equation of the tangent line to the graph of the function at the given value of x. f(x)=x^4-20x^2+64;x=-1
*Friday, October 31, 2014 by Duane*

**Calculus**

h(x)=(x^12-2)^3 h'(x)=
*Friday, October 31, 2014 by Duane*

**Calculus **

Suppose an E. coli culture is growing exponentially at 37 ◦C. After 20 minutes at that temperature, there are 1.28×10^7 E. coli cells. After 60 minutes, there are 2.4×10^7 cells. How long does it take for the culture to have double the amount of cells that it...
*Thursday, October 30, 2014 by Annie*

**Calculus**

Find the derivative of the function. h(x)=(x^10-1)^3 h'(x)=
*Thursday, October 30, 2014 by Duane*

**calculus**

A woman pulls a sled which, together with its load, has a mass of m kg. If her arm makes an angle of θ with her body (assumed vertical) and the coefficient of friction (a positive constant) is μ, the least force, F, she must exert to move the sled is given by If &#...
*Thursday, October 30, 2014 by Michael*

**Calculus**

A wire of length 12 meter is cut into two parts; one part is bent to form a square, and the other is bent to form an equilateral triangle. Where the cut cut should be made if a) the sum of the two areas is to be a maximum? b) the sum of the two areas is be a minimum?
*Thursday, October 30, 2014 by RON*

**math**

A manufacturing company finds that the daily cost of producing x items of a product is given by c(x)=210x + 7000. Find x using calculus
*Wednesday, October 29, 2014 by Amy*

**Calculus**

Find the points at which y = f(x) = x^11-6x has a global maximum and minimum on the interval 0 ¢®A x ¢®A 4 Round your answers to two decimal places. Global Maximum: (x,y) = (,) Global Minimum: (x,y) = (,)
*Wednesday, October 29, 2014 by Anonymous*

**Calculus**

Find the points at which y = f(x) = x^11-6x has a global maximum and minimum on the interval 0 ¡Â x ¡Â 4 Round your answers to two decimal places. Global Maximum: (x,y) = (,) Global Minimum: (x,y) = (,)
*Wednesday, October 29, 2014 by FRANK*

**Calculus**

New York state income tax is based on taxable income which is part of a person's total income. The tax owed to the state is calculated using taxable income (not total income). In 2005, for a single person with a taxable income between $20,000 and $100,000, the tax owed ...
*Wednesday, October 29, 2014 by Alex*

**Calculus**

A balloon rises at the rate of 8 feet per second from a point on the ground 60 feet from an observer. Find the rate of change of the angle of elevation when the balloon is 25 feet above the ground. I have d(theta)/dt=(1/60)cos^2(theta)(8) How do I find theta?
*Wednesday, October 29, 2014 by Anonymous *

**AP Calculus**

Are infinite discontinuities removable? Also, please help me with this question: f(x)=x^2+4x+3 / x^2-9 has one removable discontinuity and one vertical asymptote. Find and identify the x-value for each. I found the asymptote at x=3, but please help for the discontinuity. Thanks!
*Tuesday, October 28, 2014 by Jerry*

**Calculus**

Find the point(s) (if any) of horizontal tangent lines: x^2+xy+y^2=6
*Tuesday, October 28, 2014 by Anonymous *

**Calculus HELP PLEASE!**

Need help on this problem please! Been stuck for half hour trying to figure it out but I can't get through a. A and B look to be similar but I don't know how to do them! Please help! ----------------------------------- The resistance of blood flow, R, in a blood vessel...
*Tuesday, October 28, 2014 by Anonymous*

**Calculus**

Find the work done by F(x,y,z)=(x^2y)i=(x-z)j+(xyz)k where c=(t)i+(t^2)j+(2)k, 0<t<1. The answer is supposed to be -17/15, but i keep getting -13/10. Any help on the process would be appreciated.
*Tuesday, October 28, 2014 by Ashley*

**Calculus**

A human cannonball is shot from a cannon at a speed of 21 meters per second at an angle of 20 degrees; how long before his height is 0? How far did he travel in that time?
*Tuesday, October 28, 2014 by Anonymous*

**Calculus **

Consider the function f(x)=(x^2)e^(14x) f(x) has two inflection values at x = C and x = D with C≤D where C is and D is Finally for each of the following intervals, tell whether f(x) is concave up or concave down. (−∞,C]: [C,D]: [D,∞)
*Tuesday, October 28, 2014 by Hailey*

**Calculus **

The mass, M, of a child can be approximated based on the height, H, of the child. The height of the child can be projected based on the child's age, A. a) State the chain rule for the derivative of the mass with respect to age (ie. find dM/dA) b) Suppose that an allometric...
*Tuesday, October 28, 2014 by Anonymous*

**Calculus 1**

The resistance of blood flow, R, in a blood vessel is dependent on the length of the blood vessel, the radius of the blood vessel, and the viscosity of the blood. This relationship is given by R = 8Lη/πr^4 where r is the radius, L is the length, and the positive ...
*Tuesday, October 28, 2014 by Anonymous*

**Calculus **

A ball is thrown up on the surface of a moon. Its height above the lunar surface (in feet) after t seconds is given by the formula h=308t−(14/6t^2) Find the time that the ball reaches its maximum height. Answer = Find the maximal height attained by the ball Answer =
*Tuesday, October 28, 2014 by Hailey*

**Calculus **

The top and bottom margins of a poster are 2 cm and the side margins are each 8 cm. If the area of printed material on the poster is fixed at 380 square centimeters, find the dimensions of the poster with the smallest area. Width = Height =
*Tuesday, October 28, 2014 by Hailey*

**Calculus **

A Norman window has the shape of a semicircle atop a rectangle so that the diameter of the semicircle is equal to the width of the rectangle. What is the area of the largest possible Norman window with a perimeter of 49 feet?
*Tuesday, October 28, 2014 by Hailey*

**Calculus **

A rectangle is inscribed with its base on the x-axis and its upper corners on the parabola y=4−x^2. What are the dimensions of such a rectangle with the greatest possible area? Width = Height =
*Tuesday, October 28, 2014 by Hailey*

**Calculus 1**

The resistance of blood flow, R, in a blood vessel is dependent on the length of the blood vessel, the radius of the blood vessel, and the viscosity of the blood. This relationship is given by R = 8Lη/πr^4 where r is the radius, L is the length, and the positive ...
*Tuesday, October 28, 2014 by Anonymous*

**Calculus 1**

The mass, M, of a child can be approximated based on the height, H, of the child. The height of the child can be projected based on the child's age, A. a) State the chain rule for the derivative of the mass with respect to age (ie. find dM/dA) b) Suppose that an allometric...
*Tuesday, October 28, 2014 by Anonymous*

**calculus**

3) f(x)=x^(2)/6x^(2)+4. List the x values of the inflection points of f.
*Tuesday, October 28, 2014 by Hailey*

**Calculus **

The top of a 13 foot ladder is sliding down a vertical wall at a constant rate of 4 feet per minute. When the top of the ladder is 5 feet from the ground, what is the rate of change of the distance between the bottom of the ladder and the wall
*Monday, October 27, 2014 by John*

**Calculus: need clarification to where the #'s go**

A particle is moving along the curve y= 2 \sqrt{4 x + 4}. As the particle passes through the point (3, 8), its x-coordinate increases at a rate of 5 units per second. Find the rate of change of the distance from the particle to the origin at this instant. *I just need step by ...
*Monday, October 27, 2014 by Alessandra*

**Calculus: need clarification to where the #'s go**

Air is being pumped into a spherical balloon so that its volume increases at a rate of 80 \mbox{cm}^3\mbox{/s}. How fast is the surface area of the balloon increasing when its radius is 14 \mbox{cm}? Recall that a ball of radius r has volume \displaystyle V=\frac{4}{3}\pi r^3 ...
*Monday, October 27, 2014 by Alessandra*

**Calculus: need clarification to where the #'s go**

When air expands adiabatically (without gaining or losing heat), its pressure P and volume V are related by the equation PV^{1.4}=C where C is a constant. Suppose that at a certain instant the volume is 330 cubic centimeters and the pressure is 79 kPa and is decreasing at a ...
*Monday, October 27, 2014 by Alessandra*

**Calculus**

At noon, ship A is 50 nautical miles due west of ship B. Ship A is sailing west at 19 knots and ship B is sailing north at 24 knots. How fast (in knots) is the distance between the ships changing at 3 PM? (Note: 1 knot is a speed of 1 nautical mile per hour.)
*Monday, October 27, 2014 by Alessandra*

**Calculus - PLEASE HELP!**

Find al points where tangent lines to: (x^2+y^2)^(3/2) = sqrt(x^2+y^2) + x is either horizontal or vertical using implicit differentiation.
*Monday, October 27, 2014 by Al*

**Calculus**

A person whose height is 6 feet is walking away from the base of a streetlight along a straight path at 4 feet per second. If the height of the streetlight is 15 feet, what is the rate at which the person's shadow is lengthening?
*Monday, October 27, 2014 by Anonymous*

**Calculus **

If y=sqrt (x^2+16), then d^2y/dx^2=?
*Monday, October 27, 2014 by Anonymous*

**Calculus**

A sphere is increasing in volume at the rate of 3(pi) cm^3/sec. At what rate is the radius changing when the radius is 1/2 cm? The volume of a sphere is given by V=4/3(pi)r^2 A. pi cm/sec B. 3 cm/sec C. 2 cm/sec D. 1 cm/sec E. .5 cm/sec
*Monday, October 27, 2014 by Anonymous*

**Calculus**

If (x+2y)dy/dx=2x-y, what is the value of d^2y/dx^2 at the point (3,0)? A. -10/3 B. 0 C. 2 D. 10/3 E. Undefined
*Monday, October 27, 2014 by Anonymous*

**Calculus**

If f(x)=sqrt (x^2-4) and g(x)=3x-2, then the derivative of f(g(x)) at x=3 is A. 7/sqrt 5 B. 14/sqrt 5 C. 18/sqrt 5 D. 15/sqrt 21 E. 30/sqrt 21
*Monday, October 27, 2014 by Anonymous*

**Calculus**

A sphere is increasing in volume at the rate of 3(pi) cm^3/sec. At what rate is the radius changing when the radius is 1/2 cm? The volume of a sphere is given by V=4/3(pi)r^3. A. pi cm/sec B. 3 cm/sec C. 2 cm/sec D. 1 cm/sec E. .5 cm/sec
*Sunday, October 26, 2014 by Anonymous*

**Calculus**

If y=sqrt (x^2+16), then d^2y/dx^2= A. 1 / (4(x^2+16)^3/2) B. 4(3x^2+16) C. x / ((x^2+16)^1/2) D. (2x^2+16) / ((x^2+16)^3/2) E. 16 / ((x^2+16)^3/2)
*Sunday, October 26, 2014 by Anonymous*

**Calculus**

Use the four-step process to find the slope of the tangent line to the graph of the function at the given point and determine an equation of the tangent line. f(x) = -2x2-2x+1 (-1, -2)
*Sunday, October 26, 2014 by Duane*

**calculus**

Find the length and width of a rectangle that has the given area and a minimum perimeter. Area: 8A square centimeters
*Sunday, October 26, 2014 by liz*

**Calculus**

Let f(x)=(2x+1)^3 and let g be the inverse function of f. Given f(0)=1, what is the value of g'(1)? A. -2/27 B. 1/54 C. 1/27 D. 1/6 E. 6
*Sunday, October 26, 2014 by Anonymous*

**Calculus**

Find al points where tangent lines to: (x^2+y^2)^(3/2) = sqrt(x^2+y^2) + x is either horizontal or vertical.
*Sunday, October 26, 2014 by Al*

**Calculus**

If f(x)=sinx and g(x)=cosx, then the set for all x for which f'(x)=g'(x) is: A. Pi/4 + k(pi) B. Pi/2 + k(pi) C. 3pi/4 +k(pi) D. Pi/2 + 2k(pi) E. 3pi/2 + 2k(pi)
*Sunday, October 26, 2014 by Anonymous*

**Calculus**

If r is positive and increasing, for what value of r is the rate of the increase of r^3 twelve times that of r? A. Cubed root 4 B. 2 C. Cubed root 12 D. 2 sqrt 3 E. 6
*Sunday, October 26, 2014 by Anonymous*

**Calculus**

A 12-ft ladder is leaning against a vertical wall when Jack begins pulling the foot of the ladder away from the wall at the rate of 0.5ft/s. What is the configuration of the ladder at the instant that the vertical speed of the top of the ladder equals the horizontal speed of ...
*Sunday, October 26, 2014 by Zoe*

**Calculus**

Find al points where tangent lines to: (x^2+y^2)^(3/2) = sqrt(x^2+y^2) + x is either horizontal or vertical.
*Sunday, October 26, 2014 by Al*

**Calculus**

The radius of a circle is increasing. At a certain instant, the rate of increase in the area of the circle is numerically equal to twice the rate of increase in its circumference. What is the radius of the circle at that instant? A. 1/2 B. 1 C. Sqrt 2 D. 2 E. 4
*Sunday, October 26, 2014 by Anonymous*

**Calculus 1**

Given f(x)= 3e^(1-x^2)*ln(x), find the equation of the tangent line at x = 1.
*Sunday, October 26, 2014 by Ben*

**calculus**

A 6 foot tall man walks at a rate of 5 feet per second along one edge of a road that is 30 feet wide. On the other edge of the road is a light atop a pole 18 feet high. How fast is the length of the man's shadow increasing when he is 40 feet beyond the point directly ...
*Sunday, October 26, 2014 by Bryce*

**calculus**

a. find an equation for the secant line through the points where x has the given values. b. find a equation for the line tangent to the curve when x has the first value. y=9square root(x); x=16, x=25
*Sunday, October 26, 2014 by Duane*

**Calculus 1**

A right triangle has a fixed base of length 6 meters and a height that is increasing at a rate of 2 meters/second. At what rate is the length of the hypotenuse increasing when the height is 8 meters?
*Sunday, October 26, 2014 by Ben*

**calculus**

for f(x)=5/8, a. find an equation for the secant line through points where x=4 and x=5.b. find an equation for the line tangent to the curve when x=4. I can solve part a., but I am confused on part b. please help. I don't understand how to plug the numbers into the ...
*Sunday, October 26, 2014 by Duane*

**Calculus**

We are going to fence in a rectangular field and have a maximum of 200 feet of material to construct the fence. Determine the dimensions of the field that will enclose the maximum area?
*Sunday, October 26, 2014 by Fareed*

**Calculus**

a hyperbola passing through (8,6) consists of all points whose distance from the origin is a constant more than its distance from the point (5,2). find the slope of the tangent line to the hyperbola at (8,6).
*Sunday, October 26, 2014 by Al*

**Calculus**

The graph of the equation x2 − xy + y2 = 9 is an ellipse. Find the lines tangent to this curve at the two points where it intersects the x-axis. Show that these lines are parallel.
*Sunday, October 26, 2014 by Al*

**Calculus**

400 feet of fencing is to be used to enclose four adjacent pieces of land. What dimensions will produce the largest area?
*Saturday, October 25, 2014 by Rick*

**Calculus/pre-trig**

Write the formula for the discriminant. State the types of roots for a quadratic equation, explaining how the discriminant helps you determine the type.
*Saturday, October 25, 2014 by Anonymous*

**Calculus (math)**

A conical water tank with vertex down has a radius of 12 feet at the top and is 23 feet high. If water flows into the tank at a rate of 20 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12 feet deep?
*Saturday, October 25, 2014 by mariel*

**calculus **

A spherical snowball is placed in the sun. The snowball melts so that it's surface area decreases at a rate of 2 cm2 /min. Find the rate at which the diameter decreases when the diameter is 8 cm
*Friday, October 24, 2014 by Jocelyn*

**Calculus**

Given x^2+y^2=4, find the equation of the tangent line at the point (-1,sq.rt.3). Then, at what point is the slope 0? What point is the slope -1? I have no clue what to do!
*Friday, October 24, 2014 by Matilda*

**Calculus please help**

The power, P, dissipated when a 6-volt battery is put across a resistance of R ohms is given by P=36R. What is the rate of change of power with respect to resistance?
*Thursday, October 23, 2014 by lauren*

**Calculus**

I need help determining the intervals of increase, decrease and the intervals of upward and downward concavity given f prime. f'(x)=(64x^4 - 125x) ^(-2/3). Im not sure how to solve this. I know that the function has no intervals of decrease, its the rest im having trouble ...
*Thursday, October 23, 2014 by Sam*

**Calculus**

Let f be a function such that f(−6)=−6, f(6)=6, f is differentiable for all real values of x and −1≤f'x≤1 for all real values of x. Prove that f(x)=x for all −6≤x≤6 I tried applying the mean value theorem here but I'm not...
*Thursday, October 23, 2014 by Ss*

**calculus**

Let \lambda be a positive real number. Evaluate \sin^{-1}(\lambdai)
*Tuesday, October 21, 2014 by siri*

**Calculus**

Find f'(a). f(x)=(x^2+1)/(x-2) Is it (x^2-5x+2)/(x-2)^2 ?
*Tuesday, October 21, 2014 by Anonymous*

**Calculus**

Use linear approximation, i.e. the tangent line, to approximate \sqrt[3] { 7.9 } as follows: The equation of the tangent line to f(x) at x = 8 can be written in the form y = Using this, we find our approximation for \sqrt[3] {7.9} is
*Tuesday, October 21, 2014 by Ashley*

**calculus**

find the absolute maximum and minimum of the function y=2cos(t)+sin(2t) on the interval of [0, pi/2] I have taken the derivative but I have no clue how to solve it for 0
*Monday, October 20, 2014 by Kenneth*

**calculus**

Use the four-step process to find the slope of the tangent line to the graph of the function at the given point and determine an equation of the tangent line.f(x)= x^2 - 5x +2 (1, -2)
*Monday, October 20, 2014 by Duane*

**Calculus**

Find the critical numbers of the function f(x)=x^1/6−x^−5/6.
*Monday, October 20, 2014 by Hailey*

**Calculus**

Consider the function f(x)=ln(x)/x^6. For this function there are two important intervals: (A,B] and [B,∞) where A and B are critical numbers or numbers where the function is undefined. Find A Find B For each of the following intervals, tell whether f(x) is increasing or...
*Monday, October 20, 2014 by Hailey*

**calculus**

9) Find all critical numbers of the function f(t)=9t^2/3+t^5/3
*Monday, October 20, 2014 by Hailey*

**Calculus**

7) Consider the function f(x)=x2e4x. For this function there are three important intervals: (−∞,A], [A,B], and [B,∞) where A and B are the critical numbers. Find A and B For each of the following intervals, tell whether f(x) is increasing (type in INC) or ...
*Monday, October 20, 2014 by Hailey*

**Calculus**

f(x)=4x3−18x2−480x−2 is decreasing on what interval? It is increasing on what interval(s) ? The function has a local maximum at ?
*Monday, October 20, 2014 by Hailey*

**Calculus**

18) Find all numbers c that satisfy the conclusion of the Mean Value Theorem for the following function and interval. Enter the values in increasing order and enter N in any blanks you don't need to use. f(x)=2x/6x+12,[1,4]
*Monday, October 20, 2014 by Hailey*

**Calculus**

A potter forms a piece of clay into a right circular cylinder. As she rolls it, the height h of the cylinder increases and the radius r decreases. Assume that no clay is lost in the process. Suppose the height of the cylinder is increasing by 0.4 centimeters per second. What ...
*Monday, October 20, 2014 by Cookie Monster*

**Calculus**

Suppose that water is pouring into a swimming pool in the shape of a right circular cylinder at a constant rate of 3 cubic feet per minute. If the pool has radius 6 feet and height 10 feet, what is the rate of change of the height of the water in the pool when the depth of the...
*Monday, October 20, 2014 by Dan the Man*

**Calculus**

Consider the closed curve in the day plane: 2x^2-2xy+y^3=14 a) show that dy/dx=2y-4x/3y^2-2x (I got this part) b) find equation lines to the curve when y=2 c) if the point (2.5, k) is on the curve, use part b to find the best approximation of the value of k
*Monday, October 20, 2014 by Marie*

**calculus**

A lamp post 3m high is 6m from a wall. A 2m man tall is walking directly from the post toward at 2.5m/s. How fast is his 1.5 from the wall
*Monday, October 20, 2014 by James*

**Calculus**

An inverted conical tank is being filled with water, but it is discovered that it is also leaking water at the same time. The tank is 6 meters high and its diameter at the top is 4 meters. The water is being added to the tank at a constant rate. Some of this water is found to ...
*Sunday, October 19, 2014 by Ryan*

**Calculus**

A bright light on the ground illuminates a wall 12 meters away. A man walks from the light straight toward the building at a speed of 2.3 m/s. The man is 2 meters tall. When the man is 4 meters from the building, how fast is the length of his shadow on the building decreasing?
*Sunday, October 19, 2014 by Ryan*

**Calculus**

A pulley system on a pier is used to pull boats towards the pier for docking. Suppose that a boat is being docked and has a rope attaching the boat's bow on one end and feeding through the pier's pulley system on the other end. The pulley system is 1 meter higher than ...
*Sunday, October 19, 2014 by Ryan*

**Calculus**

Find the value of a so that the tangent line to y = ln(x) at x = a is a line through the origin. I am unsure how to go about this.
*Sunday, October 19, 2014 by Mel*

**Calculus**

find y' of 4(cos(x^3))^2 when x = 1. I got -24(1)(cos(1)(sin(1) = -0.4187 but the answer is -10.9.
*Sunday, October 19, 2014 by Dave*

**Calculus**

Find an equation of the tangent line to the curve f(x) = (sins)^2 + 2tanx at x= pi/4. I worked through it and got y = 5x + 5/2 for my answer, but the answer key says that it is y - 5/2 = 5(x - pi/4). Why is the pi/4 in the answer? Thanks for any help!
*Sunday, October 19, 2014 by Lucy*

**calculus**

find the x-coordinate of all points on the curve y=12Xcos(5X)-(30*sqrt3*X^2) + 16, pi/5<X<2pi/5 where the tangent line passes through the point (0,16), (not on the curve) I have absolutely no idea how to solve this one
*Sunday, October 19, 2014 by jake*

**Calculus**

Find f''(1/2) using f(x) = ln(1-x). f'(x) = 1/(1-x) * -1 = -1/(1-x) so then using quotient rule: f''(x) = ((-1*-1) - ((1-x)(0))) / (1-x)^2 f''(1/2) = 1/(1-(1/2))^(2) = 4 Is this correct?
*Sunday, October 19, 2014 by Tom*

**Calculus**

What is the derivative of (ln(x))^x ? I have: f(x) = ln(x)^x f(x) = xlnx f'(x) = x/x + 1 * ln(x) f'(x) = 1 + ln(x) Is this correct?
*Sunday, October 19, 2014 by Tom*

**calculus**

can anyone help me with that question what is the domain of log(log(x)the base is 0.2)
*Saturday, October 18, 2014 by rania*

**calculus**

Use polar coordinates to find the volume of the given solid. Inside the sphere x^2+y^2+z^2=25 and outside the cylinder x^2+y^2=1
*Saturday, October 18, 2014 by siri*