which is a factor of trinomial t^4-qt^2-24q^2

A (t^2+8q)
B (t^2+3q)
C (t^2+3)
D (t^2+8)

none. You need two factors of 24 which differ by 1.

Check for typos

1,24 gives 23q
2,12 gives 10q
3,8 gives 5q
4,6 gives 2q

sorry its t^4-5qt^2-24q^2

well, I guess you know the answer, then, right?

To determine which of the given options is a factor of the trinomial t^4 - qt^2 - 24q^2, we can use the factor theorem. According to the factor theorem, if a polynomial P(x) has a factor (x - k), then substituting k into the polynomial will result in P(k) = 0.

Let's check each option by substituting them into the trinomial:

A) (t^2 + 8q)
Substituting (t^2 + 8q) into the trinomial:
(t^4 - qt^2 - 24q^2) / (t^2 + 8q)
P(√(-8q)) = (√(-8q))^4 - q(√(-8q))^2 - 24q^2
=> (-8q)^2 - q(-8q) - 24q^2
=> 64q^2 + 8q^2 - 24q^2
=> 48q^2 ≠ 0

B) (t^2 + 3q)
Substituting (t^2 + 3q) into the trinomial:
(t^4 - qt^2 - 24q^2) / (t^2 + 3q)
P(-√(3q)) = (-√(3q))^4 - q(-√(3q))^2 - 24q^2
=> (3q)^2 - q(3q) - 24q^2
=> 9q^2 - 3q^2 - 24q^2
=> -18q^2 ≠ 0

C) (t^2 + 3)
Substituting (t^2 + 3) into the trinomial:
(t^4 - qt^2 - 24q^2) / (t^2 + 3)
P(-√3) = (-√3)^4 - q(-√3)^2 - 24q^2
=> 3^2 - 3q - 24q^2
=> 9 - 3q - 24q^2
=> -24q^2 - 3q + 9
This result is not necessarily equal to zero.

D) (t^2 + 8)
Substituting (t^2 + 8) into the trinomial:
(t^4 - qt^2 - 24q^2) / (t^2 + 8)
P(-√8) = (-√8)^4 - q(-√8)^2 - 24q^2
=> 8^2 - 8q - 24q^2
=> 64 - 8q - 24q^2
=> -24q^2 - 8q + 64
This result is not necessarily equal to zero.

From the calculations above, only option B (t^2 + 3q) does not yield a non-zero value when substituted into the trinomial. Therefore, option B is the factor of the trinomial t^4 - qt^2 - 24q^2.