By making the substitution u=7^x and using part a, derive a hidden quadratic equation

7^(2x-1) +4×7^(x-1) -1/14 =0

and hence find all of the solutions to the above equation.

ok ok never mind looking at the related questions.

7^(2x-1) = 7^(2x)/7
4*7^(x-1) = 4*7^x/7

so, doing what they suggested, you have

u^2/7 + 4u/7 - 1/14 = 0

Think you can handle that?

7 ^ ( 2 x - 1 ) = 7 ^ ( 2 x ) / 7 ^ 1 = ( 7 ^ x ) ^ 2 / 7

7 ^ ( x - 1 ) = 7 ^ x / 7 ^ 1 = 7 ^ x / 7

7 ^ ( 2 x -1 ) + 4 * 7 ^ ( x - 1 ) - 1 / 14 = 0

( 7 ^ x ) ^ 2 / 7 + 4 * 7 ^ x / 7 - 1 / 14 = 0

Make the substitution

u = 7 ^ x

u ^ 2 / 7 + 4 u / 7 - 1 / 14 = 0 Multiply both sides by 14

14 u ^ 2 / 7 + 4 * 14 u / 7 - 14 / 14 = 0

14 u ^ 2 / 7 + 56 u / 7 - 1 = 0

2 u ^ 2 + 8 u - 1 = 0

Now you have quadratic equatin with coefficients:

a = 2, b = 8, c = - 1

u1/2 = [ - b ± sqrooot ( b ^ 2 - 4 ac ) ] / 2 a

u1/2 = [ - 8 ± sqrooot ( 8 ^ 2 - 4 * 2 * ( - 1 ) ) ] / 2 * 2

u1/2 = [ - 8 ± sqrooot ( 64 - 8 * ( - 1 ) ] / 4

u1/2 = [ - 8 ± sqrooot ( 64 + 8 ) ] / 4

u1/2 = [ - 8 ± sqrooot ( 72 ) ] / 4

u1/2 = [ - 8 ± sqrooot ( 72 ) ] / 4

u1/2 = [ - 8 ± sqrooot ( 4 * 18 ) ] / 4

u1/2 = [ - 8 ± sqrooot ( 4 ) * sqroot (18 ) ] / 4

u1/2 = [ - 8 ± 2 * sqroot ( 18 ) ] / 4

u1/2 = [ - 2 * 4 ± 2 * sqroot ( 18 ) ] / 2 * 2

u1/2 = 2 * [ - 4 ± sqroot ( 18 ) ] / 2 * 2

u1/2 = [ - 4 ± sqroot ( 18 ) ] / 2

u1/2 = [ - 4 ± sqroot ( 9 * 2 ) ] / 2

u1/2 = [ - 4 ± sqroot ( 9 ) * sqroot ( 2 ) ] / 2

u1/2 = [ - 4 ± 3 sqroot ( 2 ) ] / 2

u1 = [ - 4 + 3 sqroot ( 2 ) ] / 2

u1 = - 4 / 2 + 3 sqroot ( 2 ) / 2

u1 = - 2 + 3 sqroot ( 2 ) / 2 = 0.12132

u2 = [ - 4 - 3 sqroot ( 2 ) ] / 2

u2 = - 4 / 2 - 3 sqroot ( 2 ) / 2

u2 = - 2 - 3 sqroot ( 2 ) / 2 = - 4.12132

u = 7 ^ x Take the logarithm of both sides

ln u = x * ln 7 Divide both sides by ln 7

ln u / ln 7 = x

x = ln u / ln 7

The logarithm of negative numbers does not exist so you must discard solution u = - 4.12132

Soution is:

x = ln u / ln 7

x = ln 0.12132 / ln 7 =

x = - 2,1093236 / 1.94591 =

x = - 1.083978

To derive the hidden quadratic equation, we will make the substitution u = 7^x.

Let's rewrite the equation using this substitution:
u^2 + 4u - 1/14 = 0

Now we have a quadratic equation in terms of u. To solve this quadratic equation, we can use the quadratic formula:
u = (-b ± √(b^2 - 4ac)) / (2a)

In our case, a = 1, b = 4, and c = -1/14. Plugging these values into the quadratic formula, we get:
u = (-4 ± √(4^2 - 4(1)(-1/14))) / (2(1))

Simplifying further:
u = (-4 ± √(16 + 4/14)) / 2
u = (-4 ± √(16 + 2/7)) / 2
u = (-4 ± √(114/7)) / 2
u = (-4 ± √(2 * (57/7))) / 2
u = (-4 ± √(2) * √(57/7)) / 2
u = (-4 ± √2 * √57 / √7) / 2
u = (-2 ± √2 * √57 / √7)
u = -2/√7 ± (√2 * √57) / √7
u = -2/√7 ± √2 * √57 * √7/ √7
u = -2/√7 ± √2 * √57
u = -2/√7 ± √(2 * 57)
u = -2/√7 ± √114

Now recall that u = 7^x. Substituting back, we get:
7^x = -2/√7 ± √114

To find the solutions, we need to solve for x. Taking the logarithm base 7 of both sides to "undo" the exponentiation, we have:
x = log_7(-2/√7 ± √114)

Hence, the solutions to the given equation are x = log_7(-2/√7 + √114) and x = log_7(-2/√7 - √114).