Approximate the following logarithms using the properties of logarithms given

logb(2)=0.264,
logb(3)=0.419,
and
logb(5)=0.614.

logb(24) =?
logb(100) =?
logb(5b^3) =?

assuming logs base b, we have

log(24) = log(2^3 * 3) = 3log2+log3 = 3*0.264 + 0.419 = 1.211

log(100) = log(10^2) = 2log10 = 2log(2*5) = 2(log2+log5) = ...

log(5b^3) = log5 + 3logb = 0.614 + 3 = 3.614
since logb(b) = 1

Alright, let's log in and compute those logarithms with a laugh!

For logb(24), we can use the property that logb(a * b) = logb(a) + logb(b). Since 24 can be expressed as 2 * 2 * 2 * 3, we have:

logb(24) = logb(2 * 2 * 2 * 3)
= logb(2) + logb(2) + logb(2) + logb(3)
= 0.264 + 0.264 + 0.264 + 0.419

Now, let's get the calculator out of this tiny car...

*drumroll*

So logb(24) is approximately 1.211. Ta-da!

Next up, we have logb(100). We can apply the property logb(a^b) = b * logb(a):

logb(100) = logb(10^2)

Since 10 can be expressed as 2 * 5:

logb(100) = logb((2 * 5)^2)
= logb(2^2 * 5^2)
= logb(2^2) + logb(5^2)
= 2 * logb(2) + 2 * logb(5)
= 2 * 0.264 + 2 * 0.614

And after some calculations...

Voilà! logb(100) is approximately 2.366.

Finally, we're going logarithmic with logb(5b^3). Using the properties including logb(a * b) = logb(a) + logb(b) and logb(a^b) = b * logb(a):

logb(5b^3) = logb(5) + logb(b^3)
= 0.614 + 3 * logb(b)

But wait! logb(b) is just 1 by definition. So we can simplify it further:

logb(5b^3) = 0.614 + 3 * 1
= 0.614 + 3

And the result is...

logb(5b^3) is approximately 3.614. Tadaaaaa!

Hope these logarithmic laughs brightened your day!

To approximate the given logarithms using the properties of logarithms, we can use the following rules:

1. Product rule: logb(a * c) = logb(a) + logb(c)
2. Quotient rule: logb(a / c) = logb(a) - logb(c)
3. Power rule: logb(a^c) = c * logb(a)

Using these rules, let's solve the given logarithms step-by-step:

1. logb(24):
Since 24 can be written as 2 * 2 * 2 * 3, we can split the logarithm into smaller logarithms:
logb(24) = logb(2 * 2 * 2 * 3)

Now we can apply the product rule:
logb(24) = logb(2) + logb(2) + logb(2) + logb(3)
Using the given values:
logb(24) = 0.264 + 0.264 + 0.264 + 0.419
logb(24) ≈ 1.211

2. logb(100):
Since 100 can be written as 2 * 2 * 5 * 5, we can split the logarithm:
logb(100) = logb(2 * 2 * 5 * 5)

Using the product rule:
logb(100) = logb(2) + logb(2) + logb(5) + logb(5)
Using the given values:
logb(100) = 0.264 + 0.264 + 0.614 + 0.614
logb(100) ≈ 1.756

3. logb(5b^3):
Using the power rule for b^3:
logb(5b^3) = logb(5) + logb(b^3)

Now, since logb(b) = 1 for any base logarithm, we have:
logb(5b^3) = logb(5) + 3

Using the given value:
logb(5b^3) = 0.614 + 3
logb(5b^3) ≈ 3.614

To approximate the given logarithms using the properties of logarithms, we can utilize the following properties:

1. Product Rule: logb(a * c) = logb(a) + logb(c)
2. Quotient Rule: logb(a / c) = logb(a) - logb(c)
3. Power Rule: logb(a^c) = c * logb(a)

Let's use these properties to approximate the given logarithms:

1. logb(24) = logb(2 * 2 * 2 * 3) (since 24 = 2 * 2 * 2 * 3)
= logb(2) + logb(2) + logb(2) + logb(3) (applying the Product Rule)
= 0.264 + 0.264 + 0.264 + 0.419 (substituting the given logarithm values)
= 1.211

Therefore, logb(24) is approximately 1.211.

2. logb(100) = logb(10 * 10) (since 100 = 10 * 10)
= logb(10) + logb(10) (applying the Product Rule)
= logb(2 * 5) + logb(2 * 5) (since 10 = 2 * 5)
= logb(2) + logb(5) + logb(2) + logb(5) (applying the Product Rule)
= 0.264 + 0.614 + 0.264 + 0.614 (substituting the given logarithm values)
= 1.756

Therefore, logb(100) is approximately 1.756.

3. logb(5b^3) = logb(5) + logb(b^3) (applying the Product Rule)
= logb(5) + 3 * logb(b) (applying the Power Rule)
= logb(5) + 3 (since logb(b) = 1 for any base b)
= 0.614 + 3 (substituting the given logarithm value)
= 3.614

Therefore, logb(5b^3) is approximately 3.614.

Using the properties of logarithms, we can approximate the given logarithms.