Find the arc length of the curve

π‘₯(𝑑)=cos𝑑+𝑑sin𝑑, 0β‰€π‘‘β‰€πœ‹/2
𝑦(𝑑) = sin 𝑑 βˆ’ 𝑑 cos 𝑑 ^2

(ds)^2 = (dx/dt)^2 + (dy/dt)^2

= (-sint + sint + tcost)^2 + (cost - cost + tsint)^2
= t^2cos^2(t) + t^2sin^2(t)
= t^2
so,

ds = dt

that's pretty easy to integrate, right?

Hmmm. I missed that ^2 hanging out there. Is

y(t) = sint - t(cost)^2
or
y(t) = sint - tcos(t^2)?

In either case, adjust the expression for ds above.

To find the arc length of the curve given by π‘₯(𝑑) = cos𝑑 + 𝑑sin𝑑 and 𝑦(𝑑) = sin𝑑 βˆ’ 𝑑cos𝑑^2, 0 ≀ 𝑑 ≀ πœ‹/2, we can use the arc length formula:

L = ∫ [√(π‘₯'(𝑑))^2 + (𝑦'(𝑑))^2] dt

First, let's find the derivatives π‘₯'(𝑑) and 𝑦'(𝑑):

π‘₯'(𝑑) = -sin𝑑 + sin𝑑 + 𝑑(cos𝑑) + sin𝑑 = 𝑑cos𝑑 + sin𝑑

𝑦'(𝑑) = cos𝑑 - 𝑠in𝑑 - 2𝑑cos𝑑(-sin𝑑) = cos𝑑 - sin𝑑 + 2𝑑(cos𝑑)(sin𝑑)

Now, substitute these derivatives back into the arc length formula and evaluate the integral:

L = ∫ [√(𝑑cos𝑑 + sin𝑑)^2 + (cos𝑑 - sin𝑑 + 2𝑑(cos𝑑)(sin𝑑))^2] dt

Simplifying, we get:

L = ∫ √(𝑑^2cos^2𝑑 + 2𝑑cos𝑑sin𝑑 + sin^2𝑑 + cos^2𝑑 - 2cos𝑑sin𝑑 + 4𝑑^2(cos^2𝑑)(sin^2𝑑)) dt

L = ∫ √(𝑑^2 + 4𝑑^2(cos^2𝑑)(sin^2𝑑)) dt

L = ∫ √(𝑑^2(1 + 4cos^2𝑑sin^2𝑑)) dt

L = ∫ √(𝑑^2(1 + 4(sin^2𝑑)(1 - cos^2𝑑))) dt

L = ∫ √(𝑑^2(1 + 4sin^2𝑑 - 4sin^2𝑑cos^2𝑑)) dt

L = ∫ √(𝑑^2(1 + 4sin^2𝑑 - 4sin^2𝑑(1 - sin^2𝑑))) dt

L = ∫ √(𝑑^2(1 + 4sin^2𝑑 - 4sin^2𝑑 + 4sin^4𝑑)) dt

L = ∫ √(𝑑^2(4sin^4𝑑 + 4sin^2𝑑 + 1)) dt

Now, integrate with respect to t:

L = ∫ π‘‘βˆš(4sin^4𝑑 + 4sin^2𝑑 + 1) dt

At this point, we can simplify the integrand to an expression involving only sin𝑑:

L = ∫ π‘‘βˆš(4(sin^2𝑑)^2 + 4sin^2𝑑 + 1) dt

After that, we can try to substitute for sin𝑑:

Let u = sin𝑑,
du = cos𝑑 dt,
dt = du / cos𝑑

Substituting, we get:

L = ∫ π‘‘βˆš(4(u^2)^2 + 4u^2 + 1) (du / cos𝑑)

Simplifying the integrand and changing the limits of integration, we have:

L = ∫ (π‘’βˆš(4u^4 + 4u^2 + 1)) du from 0 to sin(πœ‹/2)

Now, we can solve this definite integral to find the arc length of the curve.

To find the arc length of a curve, we use the formula:

L = ∫√[dx/dt]^2 + [dy/dt]^2 dt

where dx/dt and dy/dt represent the derivative of x and y with respect to t, respectively.

Let's calculate dx/dt and dy/dt first.

Given:
x(t) = cos(t) + t*sin(t)
y(t) = sin(t) - t*cos(t)^2

To find dx/dt, we take the derivative of x(t) with respect to t:

dx/dt = -sin(t) + sin(t) + t*cos(t) = t*cos(t)

To find dy/dt, we take the derivative of y(t) with respect to t:

dy/dt = cos(t) - 1*cos(t)^2 + 2t*cos(t)*sin(t) = cos(t) - cos(t)^2 + 2t*cos(t)*sin(t)

Now, we can substitute dx/dt and dy/dt into the formula for arc length:

L = ∫√[(t*cos(t)]^2 + [cos(t) - cos(t)^2 + 2t*cos(t)*sin(t)]^2 dt, where t ranges from 0 to Ο€/2.

Simplifying the expression under the square root:

L = ∫√[t^2*cos(t)^2 + cos(t)^2 - 2t*cos(t)^3 + 2t*cos(t)*sin(t) - 2t*cos(t)^2*sin(t) + 4t^2*cos(t)^2*sin(t)^2] dt

Now, we can calculate the integral from 0 to Ο€/2 numerically or using an appropriate software or calculator.