5. Prove: Tan beta sin beta + cos beta = sec beta

6. Prove: ( tan y cos^2 y + sin^2 y)/ (sin y) = cos y+sin y

7. Prove (1+tan theta)/(1-tan theta) = (sec^2+2tan theta) /(1-tan^2 theta)

try using the identity

sec^2 x = 1 + tan^2 x

It should get you through most of these

To prove these trigonometric identities, we can use various trigonometric identities and algebraic manipulations. Let's start with the first identity:

5. Proving: tan(beta) * sin(beta) + cos(beta) = sec(beta)

We'll use the definitions of tangent, sine, cosine, and secant:

tan(beta) = sin(beta) / cos(beta)
sec(beta) = 1 / cos(beta)

Starting with the left-hand side (LHS):

LHS = tan(beta) * sin(beta) + cos(beta)
= (sin(beta) / cos(beta)) * sin(beta) + cos(beta)
= sin^2(beta) / cos(beta) + cos(beta)

To combine the terms on the LHS, we'll find a common denominator:

LHS = (sin^2(beta) + cos^2(beta)) / cos(beta)
= 1 / cos(beta) [using the Pythagorean identity: sin^2(beta) + cos^2(beta) = 1]
= sec(beta) [definition of secant]

Therefore, LHS = RHS, and the identity is proven.

Moving on to the next identity:

6. Proving: (tan(y) * cos^2(y) + sin^2(y)) / sin(y) = cos(y) + sin(y)

Starting with the left-hand side (LHS):

LHS = (tan(y) * cos^2(y) + sin^2(y)) / sin(y)

Using the definition of tangent (tan):

LHS = (sin(y) / cos(y)) * cos^2(y) + sin^2(y)) / sin(y)

Expanding and simplifying:

LHS = sin(y) * cos(y) + sin^2(y) / sin(y)
= sin(y) * cos(y) + sin(y)

Factoring out sin(y) from the first term:

LHS = sin(y) * (cos(y) + 1)

Using the Pythagorean identity: cos^2(y) = 1 - sin^2(y), we can simplify the first term as:

cos(y) + 1 = 1 - sin^2(y) + 1
= 2 - sin^2(y)

Substituting it back into LHS:

LHS = sin(y) * (2 - sin^2(y))
= 2sin(y) - sin^3(y)

Now, we simplify the right-hand side (RHS):

RHS = cos(y) + sin(y)

Using the Pythagorean identity: cos^2(y) = 1 - sin^2(y) and substituting it into RHS:

RHS = √(1 - sin^2(y)) + sin(y)

To simplify the RHS, we'll square both sides:

RHS^2 = (1 - sin^2(y)) + 2√(1 - sin^2(y))sin(y) + sin^2(y)
= 1 + 2√(1 - sin^2(y))sin(y)

Taking the square root:

RHS = √(1 + 2√(1 - sin^2(y))sin(y))

We can see that LHS and RHS are not equivalent. Therefore, the given identity is not proven.

Lastly, let's prove the third identity:

7. Proving: (1 + tan(theta)) / (1 - tan(theta)) = (sec^2(theta) + 2tan(theta)) / (1 - tan^2(theta))

Starting with the LHS:

LHS = (1 + tan(theta)) / (1 - tan(theta))

Using the definition of tangent:

LHS = (1 + sin(theta) / cos(theta)) / (1 - sin(theta) / cos(theta))

Finding a common denominator:

LHS = (cos(theta) + sin(theta)) / (cos(theta) - sin(theta))

Next, we'll multiply the numerator and denominator by the conjugate of the denominator, which is (cos(theta) + sin(theta)):

LHS = (cos(theta) + sin(theta)) * (cos(theta) + sin(theta)) / (cos(theta) - sin(theta)) * (cos(theta) + sin(theta))

Expanding and simplifying:

LHS = (cos^2(theta) + 2sin(theta)cos(theta) + sin^2(theta)) / (cos^2(theta) - sin^2(theta))
= (cos^2(theta) - sin^2(theta) + 2sin(theta)cos(theta) + sin^2(theta)) / (cos^2(theta) - sin^2(theta))
= (cos^2(theta) + sin^2(theta) + 2sin(theta)cos(theta)) / (cos^2(theta) - sin^2(theta))
= (1 + sin(theta)cos(theta) / cos^2(theta) - sin^2(theta))

Using the Pythagorean identity: cos^2(theta) = 1 - sin^2(theta), we simplify further:

LHS = (1 + sin(theta)cos(theta) / (1 - sin^2(theta))

Now, we'll work on the RHS:

RHS = (sec^2(theta) + 2tan(theta)) / (1 - tan^2(theta))

Using the definitions of secant and tangent:

RHS = (1 / cos^2(theta) + 2sin(theta) / cos(theta)) / (1 - sin^2(theta) / cos^2(theta))
= (1 + 2sin(theta)cos(theta) / cos^2(theta)) / (cos^2(theta) - sin^2(theta) / cos^2(theta))
= (1 + sin(theta)cos(theta) / cos^2(theta)) / (1 - sin^2(theta))

We can see that the LHS and RHS are identical, so the given identity is proven.