find limit of h->0 [f(8+h)-f(8)]/(h) where f(x)=sqrt(x)-8

f(8+h) = sqrt (8+h) - 8

f(8) = sqrt(8) - 8
subtract
sqrt (8+h) -sqrt (8)
but
d/dh (8+h)^.5 = .5 (8+h)^-.5
so
sqrt (8+h) = sqrt 8 + .5 h/sqrt(8+h)
subtract sqrt 8
.5 h/sqrt(8+h)
divide by h
.5/sqrt (8+h)
let h -->0
.5/sqrt 8

To find the limit of the expression as h approaches 0, let's first compute the value of f(8).

f(x) = √(x) - 8

So, f(8) = √(8) - 8

Calculating √(8), we get:

f(8) = 2√2 - 8

Now, let's compute f(8+h):

f(x) = √(x) - 8

f(8+h) = √(8+h) - 8

We'll substitute these values back into the expression:

[f(8+h) - f(8)] / h = [√(8+h) - 8 - (2√2 - 8)] / h

Next, simplify the numerator:

= (√(8+h) - 2√2) / h

Now, factor out a common square root of 2:

= (√(8+h) - √8*√(h)) / h

Notice that √8 simplifies to 2√2:

= (√(8+h) - 2√2 * √h) / h

Next, multiply the numerator and denominator by the conjugate of the numerator:

= [(√(8+h) - 2√2 * √h) * (√(8+h) + 2√2 * √h)] / h * (√(8+h) + 2√2 * √h)

This will allow us to eliminate the square root from the numerator:

= [(8 + h) - 4h] / h * (√(8+h) + 2√2 * √h)

Now, simplify the numerator:

= (8 + h - 4h) / h * (√(8+h) + 2√2 * √h)

= (8 + h - 4h) / h * (√(8+h) + 2√2 * √h)

= (8 - 3h) / h * (√(8+h) + 2√2 * √h)

Finally, take the limit as h approaches 0:

lim(h->0) [(8 - 3h) / h * (√(8+h) + 2√2 * √h)]

Let's evaluate this limit:

lim(h->0) [(8 - 3h) / h * (√(8+h) + 2√2 * √h)]

= [(8 - 3(0)) / (0)] * (√(8+0) + 2√2 * √0)

= 8 * (√8 + 2√2 * 0)

= 8 * (√8 + 0)

= 8 * √8

Therefore, the limit of the expression as h approaches 0 is 8√8.