Posted by Anon on Thursday, July 31, 2014 at 6:54pm.
The picture to the right shows the Ben Franklin Bridge which stretches across the Delaware River joining Pennsylvania and New Jersey. The center span of the bridge is about 4200 feet long. The suspension cables hang in parabolic arcs from towers 750 feet above the surface of the water. These cables come as close as 220 feet to the water at the center of each span. Use this information to write an equation of the quadratic function expressing the height of the cables from the water as a function of the horizontal distance from the center span. Use the equation to calculate the length of one parabolic cable span.
I have no clue how to get the equation! I can probably get the rest of it on my own! Thanks!

AP Calc  Steve, Thursday, July 31, 2014 at 7:02pm
let the center of the cable be at (0,220). That becomes the vertex of the parabola, so the equation is
y = ax^2+220
Since y(2100) = 750, that means that
a*2100^2 + 220 = 750
a = 530/2100^2 = 0.00012
So, we now know that the height
y = 0.00012x^2 + 220
Now, we know
y' = 0.00024x
To find the length of one side of the cable, just take
∫[0,2100] √(1+(0.00024x)^2) dx = 2186 ft
Answer This Question
Related Questions
 math  In a suspension bridge, the shape of the suspension cables is parabolic. ...
 math  The main span of a suspension bridge is the roadway between the bridge's ...
 Math stem question  The main span of a suspension bridge is the roadway between...
 Math  The Lions Gate bridge in Vancouver is a suspension bridge. The main span ...
 Trig  A bridge is built in the shape of a parabolic arch. The bridge has a span...
 Algebra 1  A scale model of the Golden Gate Bridge in San Francisco Bay has a ...
 analytic geometry  The main cables of a suspension bridge uniformly distribute...
 Algebra II  I'm confused.. 1. The cables of a suspension bridge are in the ...
 college algebra  I have been stuck on this problem for over a week and I don't ...
 physics  A suspension bridge supported by a cable 100ft long has a sag of 10ft ...
More Related Questions