Posted by **ANON** on Wednesday, July 2, 2014 at 10:25am.

Let ABCD be a cyclic quadrilateral. Let P be the intersection of \overline{AD} and \overline{BC}, and let Q be the intersection of \overline{AB} and \overline{CD}. Prove that the angle bisectors of \angle DPC and \angle AQD are perpendicular.

## Answer This Question

## Related Questions

- math, geometry - The bases of trapezoid ABCD are \overline{AB} and \overline{CD...
- math - The bases of trapezoid ABCD are \overline{AB} and \overline{CD}. Let P be...
- MATH_URGENT - The bases of trapezoid ABCD are \overline{AB} and \overline{CD}. ...
- geometry - Let $\overline{PQ}$, $\overline{RS}$, and $\overline{TU}$ be parallel...
- geometry - Let $\overline{PQ}$, $\overline{RS}$, and $\overline{TU}$ be parallel...
- Geometry - Points D, E, and F are the midpoints of sides \overline{BC}, \...
- geometry - Points D, E, and F are the midpoints of sides \overline{BC}, \...
- geometry - Points D, E, and F are the midpoints of sides \overline{BC}, \...
- math PLEASE HELP - The bases of trapezoid $ABCD$ are $\overline{AB}$ and $\...
- MATH_URGENT - Let M be the midpoint of side \overline{AB} of \triangle ABC. ...

More Related Questions