# CALCULUS - Check my answers :)

posted by on .

I'd appreciate corrections for the ones I get wrong. :) Thanks!

1. Determine which of the following is true for the function f(x) = x^3 +5x^2 - 8x +3.
I. f(x) has a relative minimum at x = 2/3.

II. f(x) has a relative maximum at x = 2/3.

III. f(x) has a zero at x = 2/3

I only
*II only
III only
I and III only
II and III only

2. Determine the equation of the normal line to y = x^2 + 5 at the point (2, 9)

y=-1/4x + 17/4
*y=1/2x + 8
y=4x+1
y=4x-34
y=-1/4x + 19/2

3. If 12 ft^2 of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

2 ft^3
4 ft^3
5 ft^3
*8.5 ft^3
9 ft^3

4. Find the tangent line approximation, L(x), of f(x)=x^2/3 at x = 8.
L(x) = 4/3x-20/3
L(x) = 2/3x+8
L(x) = 4(x-8)
L(x) = 1/3x + 4/3
*L(x) = 4/3x - 8/3

5. A balloon is rising at a constant speed of 5 ft/sec. A boy is cycling along a straight road at a constant speed of 15 ft/sec. When he passes under the balloon, it is 5 feet above him. Approximately how fast is the distance between the boy and the balloon increasing 3 seconds after he has passed underneath it?
12 ft/sec
16 ft/sec
20 ft/sec
*25 ft/sec
30 ft/sec

6. A factory is manufacturing a rectangular storage container with an open top. The volume of the container is 10 ft^3, and the length of the base is twice the width. The material for the base costs \$10 per square foot, and the material for the sides costs \$6 per square foot. Find the cheapest cost to make the container, given the conditions.

\$27.85
\$46.19
*\$87.24
\$147.85
\$163.54

7. The edge of a cube was found to have a length of 50 cm with a possible error in measurement of 0.1 cm. Based on the measurement, you determine that the volume is 125,000 cm^3. Use tangent line approximation to estimate the percentage error in volume.

0.6%
0.9%
*1.2%
1.5%
1.8%

8. An inverted conical tank (with vertex down) is 14 feet across the top and 24 feet deep. If water is flowing in at a rate of 12 ft^3/min, find the rate of change of the depth of the water when the water is 10 feet deep.

0.007 ft/min
0.449 ft/min
0.018 ft/min
*0.051 ft/min
0.065 ft/min

9. For the function f(x)=Inx/x^2, find the approximate location of the critical point in the interval (0, 5).

(0.5, −2.773)
(1, 0)
(1.649, 0.184)
*(2, 0.173)
(0.778, −1.813)

• CALCULUS - Check my answers :) - ,

1. Determine which of the following is true for the function f(x) = x^3 +5x^2 - 8x +3.
I. f(x) has a relative minimum at x = 2/3.

II. f(x) has a relative maximum at x = 2/3.

III. f(x) has a zero at x = 2/3

I only
*II only
III only
I and III only
II and III only
================================
f' = 3 x^2 + 10 x - 8
zero at x = 2/3 and at a = -2
f" = 6 x + 10
curvature is POSITIVE at x = 2/3
the function is headed UP
That is a MINIMUM

• CALCULUS - Check my answers :) - ,

2. Determine the equation of the normal line to y = x^2 + 5 at the point (2, 9)

y=-1/4x + 17/4
*y=1/2x + 8
y=4x+1
y=4x-34
y=-1/4x + 19/2
==================================
dy/dx = 2x
at x = 2, slope = 2*2 =4
so m of normal= -1/slope = -1/4
y = -1/4 x + b
9 = -1/4 *2 + b
9 = -1/2 + b
b = 19/2 so I say the LAST one

• CALCULUS - Check my answers :) - ,

3. If 12 ft^2 of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

2 ft^3
4 ft^3
5 ft^3
*8.5 ft^3
9 ft^3
=================================
side length s and height h
A = 4 s h + s^2 = 12
4 s h = 12 - s^2
h = (3/s) - s/(4)

V = s^2 h
V = 3 s - s^3/4
dV/ds = 3 - (3/4)s^2
at max or min dV/ds = 0
so
3/4 s^2 = 3
s = 2
then find h
h = 3/2 - 2/4
h =1
volume = h s^2 = 1 (4) = 4

• Now you check for a while ! - ,

I am getting bored

• CALCULUS - Check my answers :) - ,

Well Damon, calculus isnt supposed to be.. interesting. Haha

• CALCULUS - Check my answers :) - ,

Is number 4 the last one?

• CALCULUS - Check my answers :) - ,

And 5 would be 25?

• CALCULUS - Check my answers :) - ,

#4, the way you typed it, ...
y' = 2x/3
when x = 8, y' = 16/3, which is not found in any of your choices as the slope

if you meant , f(x) = x^(2/3)
then y' = (2/3)x^(-1/3) = (2/3)(1/x^(1/3))
when x = 8
y' = (2/3)(1/2) = 1/3
the only one that has a slope of 1/2 is
L(x) = 1/3x + 4/3

• CALCULUS - Check my answers :) - ,

#5
At a time of t seconds after the boy passed under the balloon,
distance covered by boy = 15t
height of balloon = 5 + 5t
let the distance between them be d ft
d^2 = (5t+5)^2 + (15t)^2
2d dd/dt = 2(5t+5)(5) + 2(15t)(15)
dd/dt =( 5(5t+5) + 15(15t) )/d
when t = 3,
d^2 = 20^2 + 45^2
d = √2425

dd/dt = (5(20) + 15(45))/√2425
= 775/(5√97)
= appr 15.74

which is none of the answers unless it was rounded off to 16 ft/sec

### Answer This Question

 First Name: School Subject: Answer:

### Related Questions

More Related Questions

Post a New Question