Posted by **Ahlelie Reyes** on Thursday, November 28, 2013 at 3:28am.

A person on a ship sailing due south at the rate of 15 miles an hour observes a lighthouse due west at 3p.m. At 5p.m. the lighthouse is 52degrees west of north. How far from the lighthouse was the ship at a)3p.m.? b)5p.m.? c)4p.m.?

Please show the complete solutions and answer. Thank you! :)

- Trigonometry -
**Steve**, Thursday, November 28, 2013 at 7:36am
At 5 pm, the ship is 30 miles south of its 3pm position. The distance from the lighthouse at 3pm is thus

d/30 = tan52°

so, d=38.4

Now, to get the distance at any other elapsed time of t hours,

d^2 = 38.4^2 + (15t)^2

Let 'er rip!

## Answer this Question

## Related Questions

- Trigonometry - A person on a ship sailing due south at the rate of 15 miles an ...
- Algebra - Sorry for asking another question, but I don't know how to set this ...
- Algebra 3 and trig - An ocean liner is 177 miles due west of lighthouse A. ...
- calculus - Optimization At 1:00 PM ship A is 30 miles due south of ship B and is...
- Calculus - One ship is 20 miles due North of another ship, and is sailing South ...
- Mathamatics - A ship is due south of a lighthouse. It sails on a bearing of 72* ...
- CALCULUS!!!!! - At 9am, ship B was 65 miles due east of another ship, A. Ship B ...
- calculus - At 9am, ship B was 65 miles due east of another ship, A. Ship B was ...
- trigonometry - The bearing of the lighthouse is N 68 degress E from a ship 43 ...
- maths - A ship sailing on a course bearing 036 degrees is 5500 metres due south...