Posted by **UNO** on Saturday, November 23, 2013 at 4:02am.

The figure below presents the EQE of a triple junction solar cell with junctions A, B and C under short circuited (V = 0 V) condition.

EQE table is:

A: EQE = 0.7 wavelength= 300 to 650 nm

B: EQE = 0.9 Wavelength= 650 to 850 nm

C: EQE = 0.8 Wavelength= 850 to 1250 nm

a) What is the bandgap (in eV) of the absorber layer of the junction A?

b) What is the bandgap (in eV) of the absorber layer of the junction B?

c) What is the bandgap (in eV) of the absorber layer of the junction C?

d) Which of the following statements is TRUE?

Junction C acts as the top cell, Junction B as the middle cell, and Junction A as the bottom cell.

Junction B acts as the top cell, Junction C as the middle cell, and Junction A as the bottom cell.

Junction A acts as the top cell, Junction B as the middle cell, and Junction C as the bottom cell

TRIPLE JUNCTION SOLAR CELL - III

Each junction is illuminated under standard test conditions. Given the photon fluxes below, calculate the short-circuit current density (in mA/cm2) of each (seperate) junction (A, B and C):

ϕ=9.3∗1020m−2s−1 for 300nm<λ<650nm

ϕ=8.4∗1020m−2s−1 for 650nm<λ<850nm

ϕ=1.4∗1021m−2s−1 for 850nm<λ<1250nm

e) Jsc of Junction A:

f) Jsc of Junction B:

g) Jsc of Junction C:

TRIPLE JUNCTION SOLAR CELL - IV

h) The Voc of each junction in V can be roughly estimated by the equation

Voc=Egap(J)2q=Egap(eV)2

where q is the elementary charge, Egap(J) is the bandgap energy expressed in Joules, and Egap(eV) is the bandgap energy expressed in eV. Assume a fill factor of FF=0.75. What is then the efficiency (in %) of the triple junction solar cell?

## Answer this Question

## Related Questions

- Solar Energy Please Help - The figure below presents the EQE of a triple ...
- Solar Energy please help - Solar simulators are used to study the performance of...
- Solar - Greeting All, please assist with the below. Thanks. The spectral power ...
- Solar Energy Help ASAP - The current density of an ideal p-n junction under ...
- ET3034TUx Solar Energy - The current density of an ideal p-n junction under ...
- Physics - The current density of an ideal p-n junction under illumination can be...
- Solar Energy Please Help - Figure 1 shows a simplication of the AM1.5 solar ...
- physics - The emf of a battery is equal to its terminal potential difference: A...
- Solar Energy Help ASAP - A solar cell with dimensions 12cm x 12cm is illuminated...
- electricity - What bias conditions must be present for the normal operation of a...

More Related Questions