Wednesday
March 29, 2017

Post a New Question

Posted by on .

In the figure below the absorption coefficient as a function of the wavelength for several semiconductor materials is presented. Let's consider monochromatic light of photons with energy of Eph=1.55eV that incidents a film with thickness d. If we ignore possible reflection losses at the rear and front interfaces of the film, what thickness d (in μm) is required to achieve a light absorption of 90%?



UPDATE: Since it was very difficult to accurately read off the absorption coefficient values from the graph above, we have chosen to provide you with these values. The absorption coefficients for the different semiconductor materials at α(800nm) are:

αGaAs=2∗104cm−1
αInP=4∗104cm−1
αGe=6∗104cm−1
αSi=1∗103cm−1.

The thickness d (in μm) required to achieve a light absorption of 90% is:

1) For GaAs


2) For InP


3) For Ge


4) For Si

  • Solar Energy Help ASAP - ,

    I am also stuck at that question and can not solve it ... if you have the answer or at least some clue how can I solve it - please share!

  • Solar Energy Help ASAP - ,

    users . encs. concordia. ca/~mojtaba/ ELEC425- assignment4- solutions . pdf


    edit the spaces

  • Solar Energy Help ASAP - ,

    Can you please just give out the answers.. thanx!!

  • Solar Energy Help ASAP - ,

    please help in this q?

  • Solar Energy Help ASAP - ,

    i am also stuck plz help

  • Solar Energy Help ASAP - ,

    1.1513
    0.5756
    0.383764
    23.026
    ;)

  • Solar Energy Help ASAP - ,

    I think 1.51, not 1.15

  • Solar Energy Help ASAP - ,

    1.1513
    0.5756
    0.383764
    23.026

Answer This Question

First Name:
School Subject:
Answer:

Related Questions

More Related Questions

Post a New Question