math
posted by de3100 on .
Given the function k(x) = x2, compare and contrast how the application of a constant, c, affects the graph. The application of the constant must be discussed in the following manners:
k(x + c)
k(x) + c
k(cx)
c • k(x)

shift or scale. Any ideas which go where?

i don't understand it can you

consider the graph
k(x) = x^2
k(x) = x^2+5 is the same graph, shifted up 5 units.
Similarly, k(x) = (x5)^2 is the same graph, shifted to the right by 5 units.
If you think of the kaxis moved to the right 5 units, all the new xcoordinates are 5 less than the old ones. That's why substituting (x5) is the same as moving the kaxis 5 units to the right.
Think of scaling the same way. The graph grows or shrinks because the xcoordinate grows or shrinks by a factor of c.
Visit http://rechneronline.de/functiongraphs/ where you can play around with tweaking the functions and see how they are affected. You can display up to 3 graphs at once. So, enter
x^2 for the first,
(x5)^2 for the 2nd, and
x^2+5 for the 3rd.
You might want to change x and y ranges from 5 to 5 and make them 10 to 10 instead. Just play around some.