Friday
March 24, 2017

Post a New Question

Posted by on Tuesday, September 10, 2013 at 11:51pm.

Suppose a rocket launches with an acceleration of 32.0m/s^2.
What is the apparent weight of an 95-kg astronaut aboard this rocket?

  • Physics I - , Wednesday, September 11, 2013 at 1:53am

    Taking g=9.81m/s^2
    The astronaut will experience normal weight (due to gravity) plus weight due to acceleration.

    Apparent weight = 95kg * (1+32.0/9.81)

    The force experienced is: 95 *(9.81+32.0) N

  • Physics I - , Wednesday, September 11, 2013 at 4:23am

    Graham is correct; I just do not like the way that it is explained in some examples solved. I saw this earlier, but left it alone, and went and did something else.

    The resultant force points up and you have the force of gravity point down subtracting from the weight. So the resultant force is the weight of the astronaut minus the the gravitational force.

    ΣF=ma=W-Fg

    ma=W-Fg

    (95kg)*(32.0m/s^2)=Fw-95kg*(9.8m/s^2)

    Solving for Fw,

    Fw=(95kg)*(32.0m/s^2)+(95kg)*(9.8m/s^2)

    Fw=95kg(32.0m/s^2+9.8m/s^2)

    Solve

    Graham and I are in agreement; I just explained differently.

Answer This Question

First Name:
School Subject:
Answer:

Related Questions

More Related Questions

Post a New Question