May 30, 2016

Homework Help: math (please help steve)

Posted by Nick on Tuesday, August 6, 2013 at 9:04pm.

A crippled rook can move on a chessboard in the following way: from a square, it can move to an adjacent square sharing a common side, and every two consecutive moves must be at right angles (i.e., the rook makes a 90∘turn at every move).
A cycle is a sequence of squares which start and end at the same square, and traces out a valid path that the crippled rook can move according to the rules above. A non-intersecting cycle consists of pairwise distinct squares, with the sole exception of the starting and ending square.
What is the length of the longest possible cyclic, non-intersecting route of a crippled rook on a 15◊15 chessboard?

Answer This Question

First Name:
School Subject:

Related Questions

More Related Questions