Posted by **rhen songalia** on Tuesday, July 16, 2013 at 9:18am.

a 30 foot flagstaff is fixed in the center of a circular tower 40 feet in diameter. from a point in the same horizontal plane as the foot of the tower the angles of elevation of the top of the flagstaff and the top of the tower is 30 degree repectively. find the height of the tower

- plane and trigonometry -
**Steve**, Tuesday, July 16, 2013 at 10:13am
You have only given one angle, but I'll call the unknown angle A and assume it is the angle to the top of the pole.

Your mission, should you choose to accept it, is to fill in the missing data and follow the logic to a final solution.

If the observer is x feet from the base of the tower (that is x+20 feet from the center of the base of the tower),

and if the height of the tower is h,

h/x = tan 30 = 1/√3

(h+30)/(x+20) = tan A

equating the two expressions for x, we get

√3 h = (h+30)/tanA - 20

h = (30 cotA - 20)/(√3 - cotA)

If A is the angle of the tower, not the pole, then you got some fixing to do.

## Answer this Question

## Related Questions

- Trigonometry - A 30foot flagstaff is fixed in the center of a circular tower 40 ...
- solid mensuration - 104. A fly stationed at a point on the circumference of the ...
- MATH - GEOMETRY/TRIGONOMETRY - A 6 foot man stands by a 30 foot radio tower and ...
- Math - If an observer stands at a certain point in the same horizontal plane as ...
- math - In the given diagram,AB represents a vertical pole and CD represents a 40...
- Trigonometry - From an observation tower that overlooks a small lake, the ...
- math - A tower 125 feet high stands on the side of a hill. At a point 240 feet ...
- math - A tower 125 feet high stands on the side of a hill. At a point 240 feet ...
- math - A tower 125 feet high stands on the side of a hill. At a point 240 feet ...
- trig - a 7 foot tall man is standing 65 feet away from a tower. if the angle of ...