Posted by **Robin** on Monday, July 15, 2013 at 8:49am.

Consider the function

f(x)=(8)/(x^2)−(8)/(x^5)

.

Let F(x) be the antiderivative of f(x) with F(1)=0.

Then F(2) equals ?

## Answer this Question

## Related Questions

- Calculus - Consider the function f(x)=(7/x^2)-(6/x^6). Let F(x) be the ...
- calculus - 7) Consider the function f(x)=(10/x^2)−(2/x^6). Let F(x) be ...
- CALCULUS - Consider the function f(x)=9x3−4x5. Let F(x) be the ...
- Calculus I - Consider the function f(x)=((2)/(x^2))-((3)/(x^5)). Let F(x) be the...
- Calculus - Find f(x) if f′(x)=(−3)⋅x+(−1) and f(−4...
- Calculus - Consider the function f(x)=x^4 + 8sqrtx Let F(x) be the ...
- math - Consider the function f(t)=2sec^2(t)–6t^2 . Let F(t) be the ...
- Calculus (Antiderivatives) - Suppose f(x) is a continuous function. Then a ...
- Calculus - Consider the function f(x)=4(x−3^2/3. For this function there ...
- Calculus Help and Check - 1)Find the most general antiderivative of the function...