Sunday

April 20, 2014

April 20, 2014

Posted by **SOmebody** on Thursday, May 23, 2013 at 11:25pm.

Let Px,y be the number of paths in S which end at the point (x,y). Determine P2,4.

Details and assumptions

A lattice path is a path in the Cartesian plane between points with integer coordinates.

A step in a lattice path is a single move from one point with integer coordinates to another.

The size of the step from (x1,y1) to (x2,y2) is (x2−x1,y2−y1).

The length of a lattice path is the number of steps in the path.

For a set S={(xi,yi)}ki=1, an S-lattice path is a lattice path where every step has size which is a member of S.

**Related Questions**

sd224 - Let S be the set of {(1,0),(0,1),(1,1),(1,−1),(−1,1)}-...

math - Let S be the set of {(1,1), (1,−1), (−1,1), (1,0), (0,1)}-...

math - Let S be the set of {(1,1), (1,−1), (−1,1), (1,0), (0,1)}-...

Math - How many {(1,1),(1,−1),(2,0)}-lattice paths are there from the ...

biology - Given the part of the molecule shown below, can the underlined atom ...

Geometry - Let S be the set of {(1,1),(1,−1),(−1,1)} -lattice path ...

Math - Let S be the set of {(1,1),(1,−1),(−1,1)}-lattice path which ...

math - Let S be the set of {(1,1),(1,−1),(−1,1)}-lattice path which ...

math - Let S be the set of {(1,1),(1,−1),(−1,1)}-lattice path which ...

MATHS - The number 2+3√+5√−−−−−−...