prove identity

Sin2x - sinx/cosx + cos2x= sinx/cosx + 1

You typed it incorrectly, you must mean:

(sin(2x) - sinx)/(cosx + cos(2x)) = sinx/(cosx + 1)

LS = (2sinxcosx - sinx)/(cosx + 2cos^2 x - 1)
= sinx(2cosx -1)/( (2cosx - 1)(cosx+1) )
= sinx/(cosx + 1)
= RS

To prove the identity:

Sin(2x) - sin(x)/cos(x) + cos(2x) = sin(x)/cos(x) + 1

Let's simplify and work with each side of the equation separately:

Starting with the left side of the equation:
Sin(2x) - sin(x)/cos(x) + cos(2x)

Using the double angle formula for sin(2x) = 2sin(x)cos(x) and cos(2x) = cos²(x) - sin²(x):

2sin(x)cos(x) - sin(x)/cos(x) + cos²(x) - sin²(x)

Combining like terms:

(sin²(x) - sin²(x)) / cos(x) + cos²(x) + 2sin(x)cos(x) / cos(x)

Simplifying further:

0/cos(x) + cos²(x) + 2sin(x)

Since 0/cos(x) is equal to 0, the expression becomes:

cos²(x) + 2sin(x)

Now let's simplify the right side of the equation:

sin(x)/cos(x) + 1

We can combine the two fractions:

(sin(x) + cos(x))/cos(x)

Now, we need to rewrite (cos²(x) + 2sin(x)) in terms of cos(x).

Using the identity sin²(x) = 1 - cos²(x):

cos²(x) + 2sin(x) = (1 - sin²(x)) + 2sin(x)

Expanding and rearranging terms:

1 - sin²(x) + 2sin(x)

Now, using the Pythagorean identity sin²(x) + cos²(x) = 1:

1 - sin²(x) + 2sin(x) = cos²(x) + 2sin(x)

Now both sides of the equation are equal:

cos²(x) + 2sin(x) = cos²(x) + 2sin(x)

Therefore, we have successfully proved the identity:

Sin(2x) - sin(x)/cos(x) + cos(2x) = sin(x)/cos(x) + 1