Precalculus HELP PLEASE !
posted by Becca on .
Find the coordinates of the center of the ellipse represented by 4x^2 + 9y^2 – 18y – 27 = 0.
For 2x^2 + xy + 2y^2 = 1, find , the angle of rotation about the origin, to the nearest degree.
Find the distance between points at (–1, 6) and (5, –2).
Identify the conic section represented by x^2 – y^2 + 12y + 18x = 42.
Find the coordinates of the points of intersection of the graphs of x^2 + y^2 = 5, xy = –2, and y = –3x + 1.

4x^2 + 9(y^22y+1) = 27+9
4x^2 + 9(y1)^2 = 36
x^2/9 + (y1)^2/4 = 1
so, the center is at ...
2x^2 + xy + 2y^2 = 1
cot2θ = (AC)/B
so θ=
d^2 = (5+1)^2 + (26)^2
d = ...
x^2 – y^2 + 12y + 18x = 42
(x^2+18x+81)  (y^212y+36) = 42+8136
(x+9)^2  (y6)^2 = 87
so, it's a ...
solving the equations in pairs, we get
(2,1),(1,2),(2/5,11/5),(1,2),(2,1) 
(2/9, 1 2/4)
?
d=10
ellipse
?