Thursday

January 29, 2015

January 29, 2015

Posted by **Mihir Sriram** on Saturday, April 6, 2013 at 11:18am.

Please... i have no idea !!

- Math -
**Bosnian**, Saturday, April 6, 2013 at 11:51amThe zeroes of the polynomial x ^ 2 - 3 x - 2 are

[ 3 - sqrt ( 17 ) ] / 2

[ 3 + sqrt ( 17 ) ] / 2

so:

alpha = [ 3 - sqrt ( 17 ) ] / 2

beta = [ 3 + sqrt ( 17 ) ] / 2

x1 = alpha / 2 + beta =

[ 3 - sqrt ( 17 ) ] / ( 2 * 2 ) + [ 3 + sqrt ( 17 ) ] / 2 =

[ 3 - sqrt ( 17 ) ] / 4 + 2 * [ 3 + sqrt ( 17 ) ] / ( 2 * 2 ) ] =

[ 3 - sqrt ( 17 ) ] / 4 + 2 * [ 3 + sqrt ( 17 ) ] / ( 2 * 2 ) =

[ 3 - sqrt ( 17 ) ] / 4 + [ 6 + 2 sqrt ( 17 ) ] / 4 =

[ 3 - sqrt ( 17 ) + 6 + 2 sqrt ( 17 ) ] / 4 =

[ sqrt ( 17 ) + 9 ] / 4

beta / 2 + alpha = alpha / 2 + beta =

[ 3 + sqrt ( 17 ) ] / ( 2 * 2 ) + [ 3 - sqrt ( 17 ) ] / 2 =

[ 3 + sqrt ( 17 ) ] / 4 + 2 * [ 3 - sqrt ( 17 ) ] / ( 2 * 2 ) ] =

[ 3 + sqrt ( 17 ) ] / 4 + 2 * [ 3 - sqrt ( 17 ) ] / ( 2 * 2 ) =

[ 3 + sqrt ( 17 ) ] / 4 + [ 6 - 2 sqrt ( 17 ) ] / 4 =

[ 3 + sqrt ( 17 ) + 6 - 2 sqrt ( 17 ) ] / 4 =

[ - sqrt ( 17 ) + 9 ] / 4

Now you must use Lagrange resolvents:

y = a x ^ 2 + b x + c = a ( x - x1 ) ( x - x2 )

in this case a = 1 so :

y = ( x - x1 ) ( x - x2 )

y = ( 1 / 4 )[ sqrt ( 17 ) + 9 ] * ( 1 / 4 )[ - sqrt ( 17 ) + 9 ]

y = [ x ^ 2 - 18 x + 64 ] / 16

y = x ^ 2 / 16 - 9 x / 8 + 4

- Math -
**Bosnian**, Saturday, April 6, 2013 at 12:29pmx2 = beta / 2 + alpha =

[ 3 + sqrt ( 17 ) ] / ( 2 * 2 ) + [ 3 - sqrt ( 17 ) ] / 2 =

[ 3 + sqrt ( 17 ) ] / 4 + 2 * [ 3 - sqrt ( 17 ) ] / ( 2 * 2 ) ] =

[ 3 + sqrt ( 17 ) ] / 4 + 2 * [ 3 - sqrt ( 17 ) ] / ( 2 * 2 ) =

[ 3 + sqrt ( 17 ) ] / 4 + [ 6 - 2 sqrt ( 17 ) ] / 4 =

[ 3 + sqrt ( 17 ) + 6 - 2 sqrt ( 17 ) ] / 4 =

[ - sqrt ( 17 ) + 9 ] / 4

- Math -
**Mihir Sriram**, Sunday, April 7, 2013 at 2:56amThanks :) I understood (Y)

**Answer this Question**

**Related Questions**

Math ( Polynomial ) - This time three questions - 1. If (x^2 - 1 ) is a factor ...

Math ( Polynomial ) - This time three questions - 1. If (x^2 - 1 ) is a factor ...

Math - If alpha and beta are the zeros of the polynomial ax^2 + bx + c then ...

maths - if alpha and beta are the zeros of the polynomial 2x^2-4x+5 then find ...

trig - evaluate the following in exact form, where the angeles alpha and beta ...

maths - If alpha and beta are the zeros of the polynomial p(x)=x^2+x+1 then find...

Math - Let Alpha and Beta be the zeros of the cubic polynomial x^3 + ax^2 + bx...

Math - Let Alpha and Beta be the zeros of the cubic polynomial x^3 + ax^2 + bx...

Math - Let Alpha and Beta be the zeros of the cubic polynomial x^3 + ax^2 + bx...

Math - how i solve this two equations ib order to find alpha and beta 2=cos(...